RICHTEK

RTQ2532W

Sample & Buy

2A, 6.5V, Low Noise, Low Dropout Linear Regulator

Technical Documentation

1 General Description

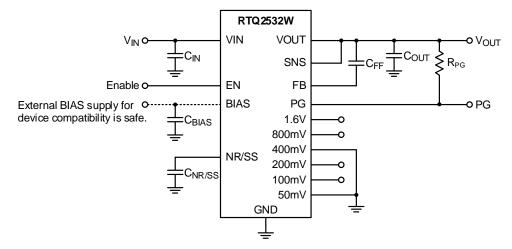
The RTQ2532W is a high-current (2A), low-noise (6.8µVRMS), high-accuracy (1% over line, load, and temperature), low-dropout linear regulator (LDO) capable of sourcing 2A with extremely low dropout (maximum 125mV). The device output voltage is pinselectable (up to 3.95V) using a PCB layout without the need of external resistors, thus reducing the overall component count. Designers can achieve higher output voltage with the use of an external resistor divider. The device supports single input supply voltage as low to 1.1V that makes it easy to use.

The low noise, high PSRR, and high output current capability make the RTQ2532W ideal to power noisesensitive devices such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and RF components. With very high accuracy, remote sensing, and soft-start capabilities to reduce inrush current, the RTQ2532W is ideal for powering digital loads such as FPGAs, DSPs, and ASICs.

The external enable control and power-good indicator function make the control sequence easier. The output noise immunity is enhanced by adding an external bypass capacitor on the NR/SS pin. The device is fully specified over the temperature range of $T_J = -40^{\circ}C$ to 125°C and is offered in a VQFN-20L 5x5 package.

2 Features

Input Voltage Range: 1.1V to 6.5V


Evaluation Boards

- **Two Output Voltage Modes**
 - 0.8 V to 5.5V (Set by a Resistive Divider)
 - 0.8 V to 3.95V (Set via PCB Layout, No **External Resistor Required)**
- Accurate Output Voltage Accuracy (1%) Over Line, Load, and Temperature
- High PSRR: 40dB at 500kHz
- **Noise Immunity**
 - 6.8µVRMs at 0.8V Output
 - 10μVRMS at 3.3V Output
- Dropout Voltage: 125mV at 2A
- **Enable Control**
- **Programmable Soft-Start Output**
- Stable with a 22µF or Larger Ceramic Output Capacitor
- **Support Power-Good Indicator Function**

3 Applications

- Portable Electronic Devices
- Wireless Infrastructures: SerDes, FPGA, DSP
- RF, IF Components: VCO, ADC, DAC, LVDS

4 Simplified Application Circuit

5 Ordering Information

RTQ2532W

Pin 1 Orientation (2): Quadrant 2, Follow EIA-481 Package Type⁽¹⁾ QV: VQFN-20L 5x5 (V-Type)

-Lead Plating System G: Richtek Green Policy Compliant⁽²⁾

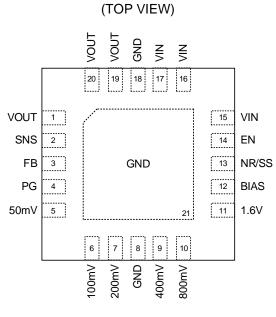
Note 1.

- Marked with ⁽¹⁾ indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.
- Marked with ⁽²⁾ indicated: Richtek products are Richtek Green Policy compliant.

6 Marking Information

```
RTQ2532W
GQV
YMDNN
```

RTQ2532WGQV: Product Code YMDNN: Date Code


Table of Contents

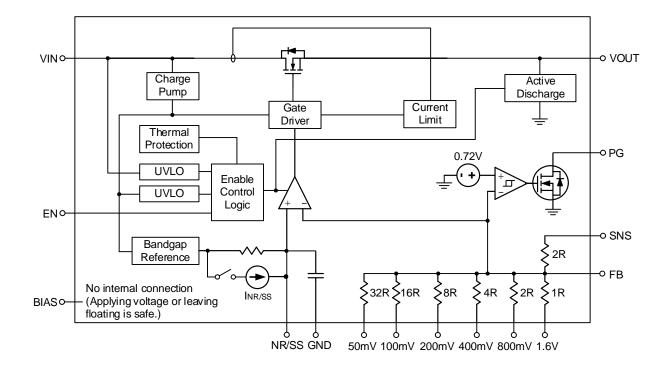
1	Gene	ral Description	1
2	Featu	res	1
3	Appli	cations	1
4	Simpl	lified Application Circuit	1
5	Order	ing Information	2
6		ng Information	
7		onfiguration	
8	Funct	ional Pin Description	4
9	Funct	ional Block Diagram	6
10	Abso	lute Maximum Ratings	7
11	ESD F	Ratings	7
12		mmended Operating Conditions	
13	Thern	nal Information	7
14		rical Characteristics	
14 15	Туріс	al Application Circuit	10
••	Туріс: Туріс:	al Application Circuit al Operating Characteristics	10 13
15	Туріс: Туріс:	al Application Circuit al Operating Characteristics ation	10 13 16
15 16	Туріс: Туріс:	al Application Circuit al Operating Characteristics ation Enable and Shutdown	10 13 16 16
15 16	Typica Typica Opera	al Application Circuit al Operating Characteristics ation Enable and Shutdown VOUT Programming Pins	10 13 16 16 16
15 16	Typica Typica Opera 17.1	al Application Circuit al Operating Characteristics ation Enable and Shutdown VOUT Programming Pins Programmable Soft-Start	10 13 16 16 16
15 16	Typica Typica Opera 17.1 17.2	al Application Circuit al Operating Characteristics ation Enable and Shutdown VOUT Programming Pins Programmable Soft-Start Power Good	10 13 16 16 16 16 16 16 16
15 16	Typic: Typic: Opera 17.1 17.2 17.3	al Application Circuit al Operating Characteristics ation Enable and Shutdown VOUT Programming Pins Programmable Soft-Start Power Good Undervoltage-Lockout (UVLO)	10 13 16 16 16 16 16 16 16 16
15 16	Typic: Typic: Opera 17.1 17.2 17.3 17.4	al Application Circuit al Operating Characteristics ation Enable and Shutdown VOUT Programming Pins Programmable Soft-Start Power Good Undervoltage-Lockout (UVLO) Internal Current Limit (ILIM)	10 13 16 16 16 16 16 16 17
15 16	Typic: Opera 17.1 17.2 17.3 17.4 17.5	al Application Circuit al Operating Characteristics ation Enable and Shutdown VOUT Programming Pins Programmable Soft-Start Power Good Undervoltage-Lockout (UVLO)	10 13 16 16 16 16 16 17 17

18	Applic	ation Information	18
	18.1	Output Voltage Setting	18
	18.2	Dropout Voltage	19
	18.3	CIN and COUT Selection	19
	18.4	Feed-Forward Capacitor (C _{FF})	20
	18.5	Soft-Start and Noise Reduction (C _{NR/SS})	20
	18.6	Input Inrush Current	20
	18.7	Undervoltage-Lockout (UVLO)	20
	18.8	Power-Good (PG) Function	
	18.9	Reverse Current Protection	
	18.10	Thermal Considerations	22
	18.11	Layout Considerations	23
19	Outlin	e Dimension	
20		rint Information	
21	•	ng Information	
	21.1	Tape and Reel Data	
	21.2	Tape and Reel Packing	
	21.3	Packing Material Anti-ESD Property	
22	Datas	heet Revision History	

7 Pin Configuration

VQFN-20L 5x5

8 Functional Pin Description


Pin No.	Pin Name	Pin Function	
1, 19, 20	VOUT	LDO output pins. A 22μ F or larger ceramic capacitor (10μ F or greater effective capacitance) is required for stability. Place the output capacitor as close to the device as possible and minimize the impedance between the VOUT pin and load.	
2	SNS	Output voltage sense input pin. Connect this pin only if using the configuration without external resistors. Keep the SNS pin floating if the VOUT voltage is set by an external resistor.	
3	FB	Feedback voltage input. This pin is used to set the desired output voltage via an external resistive divider. The feedback reference voltage is typically 0.8V.	
4	PG	Power-good indicator output. An open-drain output that is active high when the output voltage reaches 88% of the target. The pin is pulled to ground when the output voltage is lower than its specified thresholds, including EN shutdown, OCP and OTP.	
5, 6, 7, 9, 10, 11	50mV, 100mV, 200mV, 400mV, 800mV, 1.6V	Output voltage setting pins. Connect these pins to ground or leave floatin Connecting these pins to ground increases the output voltage by the value	
8, 18, 21 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.	
12	BIAS	This pin has no internal IC connection. A BIAS input voltage below 6.5V can be applied to this pin (for compatibility with other vendors) or this pin can be left open (floating). Either option is safe and will not affect IC operation.	

Pin No.	Pin Name	Pin Function	
13	NR/SS	Noise-reduction and soft-start pin. Decouple this pin to GND with an external capacitor C _{NR/SS} cannot only reduce output noise to very low levels but also slow down the rising of VOUT, providing a soft-start behavior. For low noise applications, a 10nF to 1 μ F C _{NR/SS} is suggested.	
14	EN	Enable control input. Connecting this pin to logic-high enables the regulator, and driving this pin low puts it into shutdown mode. The device can have VIN and VEN sequenced in any order without causing damage to the device. However, to ensure the soft-start function works as intended, certain sequencing rules must be applied. Enabling the device after VIN is present is preferred.	
15, 16, 17	VIN	Supply input. A general 22μ F ceramic capacitor should be placed as close as possible to this pin for better noise rejection.	

9 Functional Block Diagram

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK

10 Absolute Maximum Ratings

(<u>Note 2</u>)

• VIN, PG, EN	-0.3V to 7V
• VOUT	-0.3V to 7V
• NR/SS, FB	-0.3V to 3.6V
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C

Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

11 ESD Ratings

(<u>Note 3</u>)

- ESD Susceptibility
- HBM (Human Body Model)------ 2kV

Note 3. Devices are ESD sensitive. Handling precautions are recommended.

12 Recommended Operating Conditions

(<u>Note 4</u>)

Supply Input Voltage, VIN	1.1V to 6.5V
Junction Temperature Range	–40°C to 125°C

Note 4. The device is not guaranteed to function outside its operating conditions.

13 Thermal Information

(Note 5 and Note 6)

	Thermal Parameter	VQFN-20L 5x5	Unit
θја	Junction-to-ambient thermal resistance (JEDEC standard)	32.51	°C/W
θJC(Top)	Junction-to-case (top) thermal resistance	30.82	°C/W
θ JC(Bottom)	Junction-to-case (bottom) thermal resistance	1.73	°C/W
θJA(EVB)	Junction-to-ambient thermal resistance (specific EVB)	34.82	°C/W
ΨJC(Top)	Junction-to-top characterization parameter	3.69	°C/W
ΨJB	Junction-to-board characterization parameter	18.89	°C/W

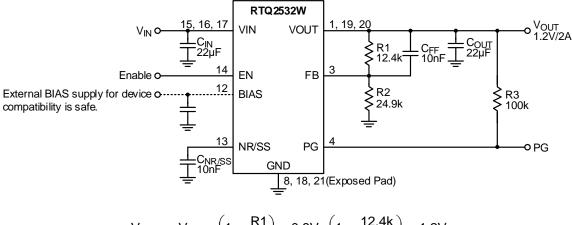
Note 5. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report, <u>AN061</u>.

Note 6. θ_{JA (EVB)}, Ψ_{JC(Top)}, and Ψ_{JB} are measured on a high effective-thermal-conductivity four-layer test board, which is in size of 70mm x 50mm; furthermore, all layers with 1 oz. Cu. Thermal resistance/parameter values may vary depending on the PCB material, layout, and test environmental conditions.

14 Electrical Characteristics

Over operating temperature range ($T_J = -40^{\circ}C$ to $125^{\circ}C$), ($1.1V \le V_{IN} < 6.5V$ and $V_{IN} \ge V_{OUT(TARGET)} + 0.3V$, $V_{OUT(TARGET)} = 0.8V$, VOUT connected to 50Ω to GND, $V_{EN} = 1.1$ V, $C_{IN} = 10\mu$ F, $C_{OUT} = 22\mu$ F, $C_{NR/SS} = 0$ nF, $C_{FF} = 0$ nF, and the PG pin pulled up to VIN with $100k\Omega$, unless otherwise noted. (Note 7)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VIN Supply Input Voltage	VIN		1.1		6.5	V
Reference Voltage	VREF			0.8		V
NR/SS Pin Voltage	VNR/SS			0.8		V
Undervoltage- Lockout Rising Threshold	Vuvlo_r	VIN increasing		1.02	1.085	V
Undervoltage- Lockout Hysteresis	VUVLO_HYS	Hysteresis		100		mV
Output Voltage	Vout	Using voltage setting pins (50mV, 100mV, 200mV, 400mV, 800mV, and 1.6V)	0.8V		3.95V	V
		Using external resistors	0.8V		5.5V	V
Output Voltage Accuracy (<u>Note 7</u>)	Vout_acc	$\label{eq:VIN} \begin{array}{l} V_{IN} = V_{OUT} + 0.3V, \ 0.8V \leq V_{OUT} \leq 5.5V, \\ 1mA \leq I_{OUT} \leq 2A \end{array}$	-1		1	%
Line Regulation	VLINE_REG	$I_{OUT} = 1mA, \ 1.1V \le V_{IN} \le 6.5 \ V$		0.05		%/V
Load Regulation	VLOAD_REG	$1mA \le I_{OUT} \le 2A$		0.08		%/A
Dropout Voltage	Vdrop	$V_{IN} = 1.1V$ to 6.5V, $I_{OUT} = 2A$, $V_{FB} = 0.8V - 3\%$			125	mV
Current Limit	ILIM	Vout = 90% Vout(target), Vin = Vout(target) + 400mV	2.2	3.3	3.8	А
Short-Circuit Current Limit	Isc	R_{LOAD} = 20m Ω , under foldback operation		1		А
Ground Pin Current	Ignd	Minimum load, VIN = 6.5V, IOUT = 5mA		2.8	4	mA
	IGND	Maximum load, V _{IN} = 1.1V, I _{OUT} = 2A		3.7	5.5	ША
Shutdown Current	ISHDN	Shutdown, PG = Open, VIN = 6.5V, V _{EN} = 0.5V			25	μA
EN Pin Current	IEN	VIN = 6.5V, VEN = 0V and 6.5V	-0.1		0.1	μA
EN Input Voltage Rising threshold	Ven_r	Enable device	1.1		6.5	V
EN Input Voltage Falling threshold	Ven_f	Disable device	0		0.5	V
Power-Good Voltage Threshold	Vpg	For the direction PG signal falling with decreasing VOUT	0.82 x Vout	0.883 x Vout	0.93 x Vout	V
Power-Good Voltage Hysteresis	Vpg_hys	For PG signal rising		2% x Vout		V
PG Pin Low-Level Output Voltage	Vpg_l	Vout < Vpg, Ipg = -1mA (current into device)			0.4	V


Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
PG Pin Leakage Current	IPG_LK	Vout > Vpg, Vpg = 6.5V				1	μΑ
NR/SS Pin Charging Current	INR/SS	VNR/SS = GND, VIN = 6.5	5V	4	-	9	μΑ
FB Pin Current	IFB	VIN = 6.5V		-100		100	nA
			f = 10kHz, Vout = 0.8V		42		
Power Supply	PSRR	$V_{IN} - V_{OUT} = 0.4V,$ $I_{OUT} = 2A,$ $C_{NR/SS} = 100nF,$ $C_{FF} = 10nF,$ $C_{OUT} = 22\mu F$	f = 500kHz, Vout = 0.8V		39		dB
Rejection Ratio	CFF :		f = 10kHz, Vout = 5V		40		
			f = 500kHz, Vout = 5V		25		
	$V_n \qquad \begin{array}{l} BW = 10 \text{Hz to } 100 \text{Hz} \\ \text{IOUT} = 2\text{A}, \\ \text{CNR/SS} = 100 \text{nF}, \\ \text{CFF} = 10 \text{nF}, \\ \text{COUT} = 22 \mu \text{F} \end{array}$	BW = 10Hz to 100kHz,	VIN = 1.1V, Vout = 0.8V		6.8		
Output Noise		CNR/SS = 100nF,	Vin = 3.6V, Vout = 3.3V		10		µV _{RM} s
		Cout = 22μF	Vout = 5 V		16		
Over-Temperature Protection Threshold	Тотр				160		°C
Over-Temperature Protection Hysteresis	Totp_hys				20		

Note 7. $V_{OUT(TARGET)}$ is the expected V_{OUT} value set by the external feedback resistors. The 50 Ω load is disconnected when the test conditions specify an I_{OUT} value.

Note 8. External resistor tolerance is not taken into account.

15 Typical Application Circuit

 $V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2}\right) = 0.8V \times \left(1 + \frac{12.4k}{24.9k}\right) = 1.2V$

Figure 1. Configuration Circuit for VOUT Adjusted by a Resistive Divider

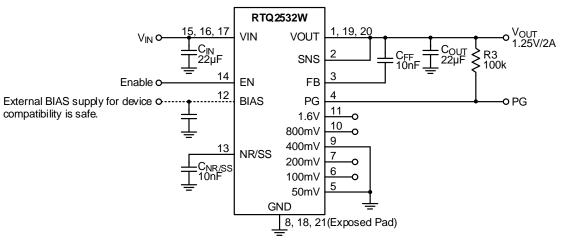

	External Restive Divider Combinations		
Output Voltage (V)	R1 (k Ω)	R2 (k Ω)	
0.9	12.4	100	
1	12.4	49.9	
1.2	12.4	24.9	
1.5	12.4	14.3	
1.8	12.4	10	
2.5	12.4	5.9	
3.3	11.8	3.74	
4.5	11.8	2.55	
5	12.4	2.37	

Table 2. Recommended External Components

Component	Description	Vendor P/N
CFF, CNR/SS	10nF, 50V, X7R, 0603	GCD188R71H103KA01 (Murata)
Cout (<u>Note 9</u>), Cin	22μF, 16V, X5R, 0805	GRM21BR61C226ME44 (Murata)

Note 9. Considering the effective capacitance derated with biased voltage level, the C_{OUT} component needs to satisfy the effective capacitance at least 10μ F or above at targeted output level for stable and normal operation.

RICHTEK

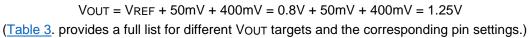


Figure 2. Configuration Circuit for Adjusted VOUT via PCB Layout

11

www.richtek.com

RICHTEK

_			Та	ble 3. V	о <mark>ит Se</mark> l	ect Pin	Settings f	or Diffe	rent Tar	gets			
V _{OUT} (V)	50mV	100mV	200mV	400mV	800mV	1.6V	V _{OUT} (V)	50mV	100mV	200mV	400mV	800mV	1.6V
0.8	Open	Open	Open	Open	Open	Open	2.4	Open	Open	Open	Open	Open	GND
0.85	GND	Open	Open	Open	Open	Open	2.45	GND	Open	Open	Open	Open	GND
0.9	Open	GND	Open	Open	Open	Open	2.5	Open	GND	Open	Open	Open	GND
0.95	GND	GND	Open	Open	Open	Open	2.55	GND	GND	Open	Open	Open	GND
1	Open	Open	GND	Open	Open	Open	2.6	Open	Open	GND	Open	Open	GND
1.05	GND	Open	GND	Open	Open	Open	2.65	GND	Open	GND	Open	Open	GND
1.1	Open	GND	GND	Open	Open	Open	2.7	Open	GND	GND	Open	Open	GND
1.15	GND	GND	GND	Open	Open	Open	2.75	GND	GND	GND	Open	Open	GND
1.2	Open	Open	Open	GND	Open	Open	2.8	Open	Open	Open	GND	Open	GND
1.25	GND	Open	Open	GND	Open	Open	2.85	GND	Open	Open	GND	Open	GND
1.3	Open	GND	Open	GND	Open	Open	2.9	Open	GND	Open	GND	Open	GND
1.35	GND	GND	Open	GND	Open	Open	2.95	GND	GND	Open	GND	Open	GND
1.4	Open	Open	GND	GND	Open	Open	3	Open	Open	GND	GND	Open	GND
1.45	GND	Open	GND	GND	Open	Open	3.05	GND	Open	GND	GND	Open	GND
1.5	Open	GND	GND	GND	Open	Open	3.1	Open	GND	GND	GND	Open	GND
1.55	GND	GND	GND	GND	Open	Open	3.15	GND	GND	GND	GND	Open	GND
1.6	Open	Open	Open	Open	GND	Open	3.2	Open	Open	Open	Open	GND	GND
1.65	GND	Open	Open	Open	GND	Open	3.25	GND	Open	Open	Open	GND	GND
1.7	Open	GND	Open	Open	GND	Open	3.3	Open	GND	Open	Open	GND	GND
1.75	GND	GND	Open	Open	GND	Open	3.35	GND	GND	Open	Open	GND	GND
1.8	Open	Open	GND	Open	GND	Open	3.4	Open	Open	GND	Open	GND	GND
1.85	GND	Open	GND	Open	GND	Open	3.45	GND	Open	GND	Open	GND	GND
1.9	Open	GND	GND	Open	GND	Open	3.5	Open	GND	GND	Open	GND	GND
1.95	GND	GND	GND	Open	GND	Open	3.55	GND	GND	GND	Open	GND	GND
2	Open	Open	Open	GND	GND	Open	3.6	Open	Open	Open	GND	GND	GND
2.05	GND	Open	Open	GND	GND	Open	3.65	GND	Open	Open	GND	GND	GND
2.1	Open	GND	Open	GND	GND	Open	3.7	Open	GND	Open	GND	GND	GND
2.15	GND	GND	Open	GND	GND	Open	3.75	GND	GND	Open	GND	GND	GND
2.2	Open	Open	GND	GND	GND	Open	3.8	Open	Open	GND	GND	GND	GND
2.25	GND	Open	GND	GND	GND	Open	3.85	GND	Open	GND	GND	GND	GND
2.3	Open	GND	GND	GND	GND	Open	3.9	Open	GND	GND	GND	GND	GND
2.35	GND	GND	GND	GND	GND	Open	3.95	GND	GND	GND	GND	GND	GND

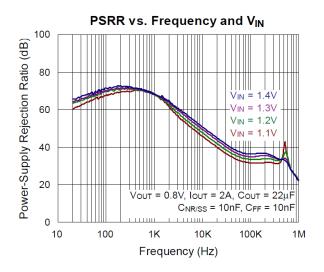
16 Typical Operating Characteristics

RICHTEK

100

80

60


40

20

0

10

Power-Supply Rejection Ratio (dB)

PSRR vs. Frequency and I_{OUT}

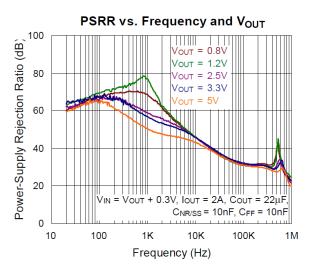
Іоит = 0.5A

louт = 1.5A

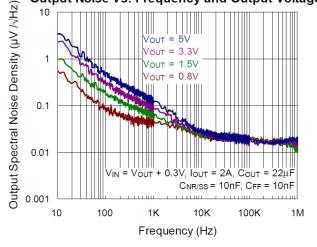
IOUT = 1A

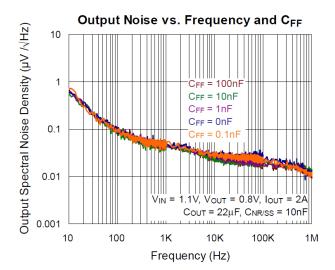
IOUT = 2A

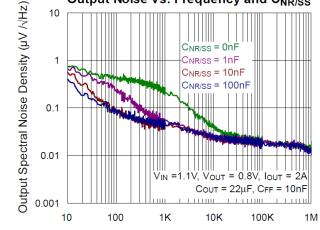
Vout = 0.8V, Cout


10K

CNR/SS = 10nF, CFF = 10nF


100K


22µl


1M

Output Noise vs. Frequency and Output Voltage

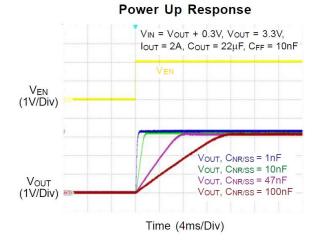
Vin

100

.1V.

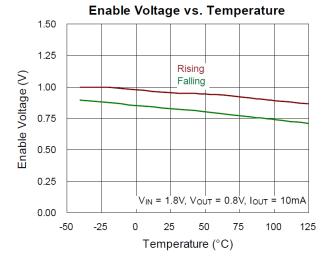
Frequency (Hz)

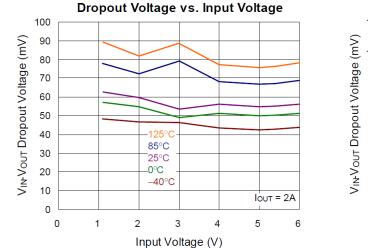
Output Noise vs. Frequency and C_{NR/SS}

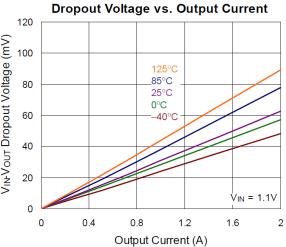

1K

Frequency (Hz)

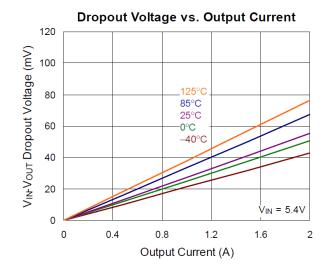

RICHTEK Copyright © 2024 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation.






Load Transient Response

Load Transient Response vs. Load Slew Rate VOUT (40mV/Div) offset 3.3V VIN = 3.7V, VOUT = 3.3V louт = 0.2A to 2A COUT = 22µF, CNR/SS = CFF = 10nF VOUT (40mV/Div) offset 3.3V Vout, Load S. R. = 0.5A/µs Vout, Load S. R. = 1A/us Vour, Load S. R. = 2A/us Vout (40mV/Div) offset 3.3V Time (50µs/Div)



17 Operation

The RTQ2532W operates with a single supply input ranging from 1.1V to 6.5V and is capable of delivering up to 2A current to the output. The device features high PSRR and low noise to provide a clean supply to the application.

A low-noise reference and error amplifier are included to reduce device noise. The NR/SS capacitor filters the noise from the reference, and the feed-forward capacitor filters the noise from the error amplifier. The high power-supply rejection ratio (PSRR) of the RTQ2532W minimizes the coupling of input supply noise to the output.

17.1 Enable and Shutdown

The RTQ2532W provides an EN pin, as an external chip enable control, to enable or disable the device. When VEN is below 0.5 V, the regulator turns off and enters the shutdown mode, while VEN is above 1.1V turns the regulator on. When the regulator is in shutdown mode, the ground current is reduced to a maximum of 25μ A. The enable circuitry has hysteresis (typically 50mV) for use with relatively slowly ramping analog signals.

If the EN pin is not used, connect it as close as possible to the largest capacitance on the input to prevent voltage droops on the VIN line from triggering the enable circuit.

17.2 VOUT Programming Pins

The built-in matched feedback resistor network of the RTQ2532W can set the output voltage. The output voltage can be programmed from 0.8V to 3.95V in 50mV steps when tying programming pins 5, 6, 7, 9, 10, and 11 to ground. Tying any of the VOUT programming pins to SNS can lower the value of the upper resistor divider. Hence, the VOUT programming resolution is increased.

17.3 Programmable Soft-Start

The noise-reduction capacitor ($C_{NR/SS}$) reduces noise and programs the soft-start ramp time during turn-on. When EN and UVLO exceed the respective threshold voltage, the RTQ2532W activates a quick-start circuit to charge the noise reduction capacitor ($C_{NR/SS}$) and then the output voltage ramps up.

17.4 Power Good

The power-good circuit monitors the feedback pin voltage to indicate the status of the output voltage. The opendrain PG pin requires an external pull-up resistor to an external supply, and any downstream device can receive power-good as a logic signal that can be used for sequencing. A pull-up resistor from $10k\Omega$ to $100k\Omega$ is recommended. Make sure that the external pull-up supply voltage results in a valid logic signal for the receiving device or devices.

After start-up, the PG pin becomes high impedance when the feedback voltage exceeds VPG_HYS (typically 90% of the 0.8V reference voltage level). The PG is pulled to GND when the feedback pin voltage falls below the VPG, when EN is low, or when the current limit or OTP levels are reached.

17.5 Undervoltage-Lockout (UVLO)

The UVLO circuit monitors the input voltage to prevent the device from turning on before VIN rises above the VUVLO threshold. The UVLO circuit also disables the output of the device when VIN falls below the lockout voltage (VUVLO_R – VUVLO_HYS). The UVLO circuit responds quickly to glitches on VIN and attempts to disable the output of the device if VIN collapses.

RICHTEK

17.6 Internal Current Limit (ILIM)

The RTQ2532W continuously monitors the output current to protect the device against high load current faults or short events. The current limit circuitry is not intended to allow operation above the rated current of the device. Continuously running the RTQ2532W above the rated current degrades the reliability of the device.

During current limit, the output voltage falls when load impedance decreases. If the output voltage is low, excessive power may cause the output thermal shutdown.

A foldback feature limits the short-circuit current to protect the regulator from damage under all load conditions. If the load current demand exceeds the foldback current limit before EN goes high, the device does not turn on.

17.7 Over-Temperature Protection (OTP)

The RTQ2532W implements over-temperature protection. The device is disabled when the junction temperature (TJ) exceeds 160°C (typical). The LDO automatically turns on again when the temperature falls below 140°C (typical).

For reliable operation, limit the junction temperature to a maximum of 125°C. Continuously running the RTQ2532W into thermal shutdown or above a junction temperature of 125°C reduces long-term reliability.

17.8 Output Active Discharge

When the device is disabled, the RTQ2532W discharges the LDO output (via VOUT pins) through an internal current sink to ground. Do not rely on the active discharge circuit for discharging a large amount of output capacitance after the input supply collapses because reverse current can possibly flow from the output to the input. External current protection should be added if the device operates in a reverse voltage state.

18 Application Information

(<u>Note 10</u>)

The RTQ2532W is a high-current, low-noise, high-accuracy, low-dropout linear regulator capable of sourcing 2A with 125mV maximum dropout. The input voltage operating range is 1.1V to 6.5V, and the adjustable output voltage is 0.8V to 5.5V according to the external resistor setting or 0.8V to 3.95V via PCB Layout to short specific pins and get the required output target.

18.1 Output Voltage Setting

The output voltage of the RTQ2532W can be set by external resistors or by using the output voltage setting pins (50mV, 100mV, 200mV, 400mV, 800mV, and 1.6V) to achieve different output targets.

By using external resistors, the output voltage is determined by the values of R1 and R2, as shown in <u>Figure 3</u>. The values of R1 and R2 can be calculated for any voltage value using the following formula:

$$V_{OUT} = 0.8 \times \frac{R1 + R2}{R2}$$

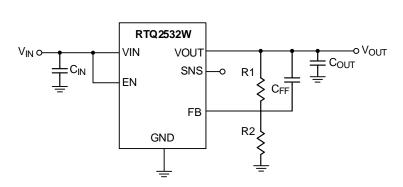


Figure 3. Output Voltage Set by External Resistors

The RTQ2532W can also short pins 5, 6, 7, 9, 10, and 11 to ground and program the regulated output voltage level without external resistors after the SNS pin is connected to the VOUT. Pins 5, 6, 7, 9, 10, and 11 are connected with internal resistor pairs. Each pin is either connected to ground (active) or left open (floating).

Voltage programming is set as the sum of the internal reference voltage (VREF = 0.8V) plus the accumulated sum of the respective voltages assigned to each active pin, as illustrated in Figure 4.

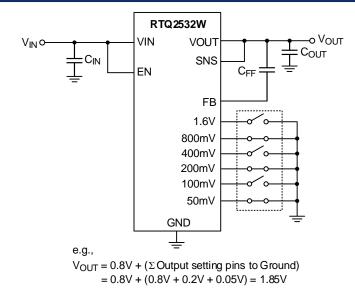


Figure 4. Output Setting without External Resistors

<u>Table 2</u> summarizes these voltage values associated with each active pin setting for reference. By leaving all programming pins open, or floating, the output is thereby programmed to the minimum possible output voltage which equals to VREF (0.8V). The maximum output target can be supported up to 3.95V after all pins 5, 6, 7, 9, 10, and 11 are shorted to ground at the same time.

18.2 Dropout Voltage

The dropout voltage refers to the voltage difference between the VIN and VOUT pins while operating at a specific output current. The dropout voltage VDROP can also be expressed as the voltage drop on the pass-FET at a specific output current (IRATED) while the pass-FET is fully operating in the ohmic region and the pass-FET can be characterized as a resistance RDS(ON). Thus, the dropout voltage can be defined as VDROP = VIN – VOUT = RDS(ON) × IRATED. For normal operation, the suggested LDO operating range is VIN > VOUT + VDROP for good transient response and PSRR performance. However, operation in the ohmic region will degrade the performance severely.

18.3 CIN and COUT Selection

The RTQ2532W is designed to support low-series-resistance (ESR) ceramic capacitors. X7R, X5R, and COGrated ceramic capacitors are recommended due to their good capacitive stability across different temperatures, whereas the use of Y5V-rated capacitors is not recommended because of large capacitance variations.

However, the capacitance of ceramic capacitors varies with operating voltage and temperature, and the design engineer must be aware of these characteristics. Ceramic capacitors are usually recommended to be derated by 50%. A 22μ F or greater output ceramic capacitor (or 10μ F effective capacitance) is suggested to ensure stability. Input capacitance is selected to minimize transient input drop during load current steps. For general applications, an input capacitor of at least 22μ F is highly recommended for minimal input impedance. If the trace inductance between the RTQ2532W input pin and power supply is high, a fast load transient can cause VIN voltage level ringing above the absolute maximum voltage rating, which damages the device. Adding more input capacitors is available to restrict the ringing and keep it below the device absolute maximum ratings.

18.4 Feed-Forward Capacitor (CFF)

The RTQ2532W is designed to be stable without the external feed-forward capacitor (CFF). However, a 10nF external feed-forward capacitor optimizes the transient, noise, and PSRR performances. A higher capacitance of CFF can also be used, but the start-up time will be longer and the power-good signal will incorrectly indicate that the output voltage is settled.

18.5 Soft-Start and Noise Reduction (C_{NR/SS})

The RTQ2532W is designed for a programmable, monotonic soft-start time during the output rising, which can be achieved via an external capacitor (CNR/SS) on the NR/SS pin. Using an external CNR/SS is recommended for general applications. It not only minimizes inrush current but also helps reduce the noise component from the internal reference.

During the monotonic start-up procedure, the error amplifier of the RTQ2532W tracks the voltage ramp of the external soft-start capacitor (CNR/SS) until the voltage approaches the internal reference 0.8V. The soft-start ramp time can be calculated with Equation a1, which depends on the soft-start charging current (INR/SS), the soft-start capacitance (CNR/SS), and the internal reference 0.8V (VREF).

$$t_{SS} = \frac{\left(V_{REF} \times C_{NR/SS}\right)}{I_{NR/SS}}$$
(a1)

For noise reduction, C_{NR/SS} in conjunction with an internal noise-reduction resistor forms a low-pass filter (LPF) and filters out the noise from the internal bandgap reference before being amplified via the error amplifier, thus reducing the total device noise floor.

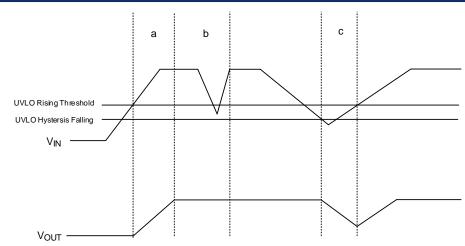
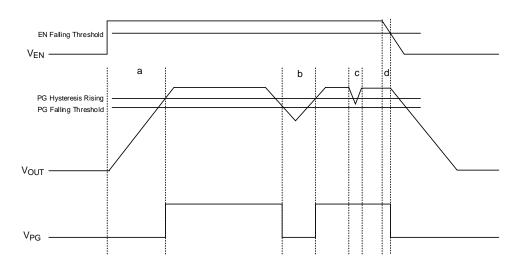
18.6 Input Inrush Current

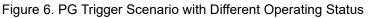
During start-up, the input Inrush current into the VIN pin consists of the sum of load current and the charging current of the output capacitor. The inrush current is difficult to measure because the input capacitor must be removed, which is not recommended. Generally, the soft-start inrush current can be estimated using Equation b1, where $V_{OUT}(t)$ is the instantaneous output voltage of the power-on ramp, $dV_{OUT}(t)/dt$ is the slope of the V_{OUT} ramp and R_{LOAD} is the resistive load impedance.

$$I_{OUT}(t) = \frac{\left(C_{OUT} \times dV_{OUT}(t)\right)}{dt} + \left(\frac{V_{OUT}(t)}{R_{LOAD}}\right)$$
(b1)

18.7 Undervoltage-Lockout (UVLO)

The Undervoltage-Lockout (UVLO) threshold is the minimum input operational voltage range that ensures the device stays disabled. Figure 5 explains that the UVLO circuits are triggered by three different input voltage events (duration a, b, and c), assuming $V_{EN} \ge V_{EN_R}$ at all times. For duration "a", the input voltage starts rising. When VIN exceeds the UVLO rising threshold, VouT starts the power-on process. Then, when VouT reaches the target level, it is under regulation. During "b", although the power line has a voltage drop, it does not drop below the UVLO low threshold (falling threshold). As a result, the device maintains normal operation, and VouT is still regulated. At duration "c", VIN drops below the UVLO falling threshold, so the control loop is disabled and there is no regulation; meanwhile, VouT drops. For general applications, an instant power line transient with a long power trace at the VIN pin may have VIN level unstable and force a trap, as shown in duration "c", which makes VouT collapse. In this case, adding more input capacitance or improving the input trace layout on the PCB are effective to improve input power stabilization.


Figure 5. Undervoltage-Lockout Trigging Conditions and Output Variation

18.8 Power-Good (PG) Function

The power-good function monitors the voltage level at the feedback pin to indicate whether the output voltage status is normal. This function enables other devices to receive the RTQ2532W's power-good signal as a logic signal that can be used for the sequence design of the system application. The PG pin is an open-drain structure, and an external pull-up resistor connected to an external supply is necessary. The pull-up resistor value between $10k\Omega$ to $100k\Omega$ is recommended for proper operation. The lower limit of $10k\Omega$ results from the maximum pull-down strength of the power-good transistor, and the upper limit of $100k\Omega$ results from the maximum leakage current at the power-good node.

Figure 6 demonstrates some PG scenarios versus VIN, EN, and protection status. During "a", VEN is higher than the VEN_R threshold, and the device is in operation. In this period, VOUT starts rising (the rising time is related to the soft-start capacitor CNR/SS). When VOUT exceeds the PG hysteresis threshold, the reflected feedback voltage VFB exceeds the VPG_HYS threshold. Consequently, the PG pin becomes a high-impedance node. The duration "b" indicates some unpredictable operation (for example: OTP, OCP, or severe output voltage drop caused by very fast load variation). When VFB is lower than the VPG threshold, VPG is pulled to GND, which indicates that the output voltage is not ready. In duration "c", Vout has a small drop, which is not lower than the PG falling threshold; the PG pin remains in high impedance. After VEN becomes logic "0", VPG is pulled to GND, as shown in duration "d".

RICHTEK is a registered trademark of Richtek Technology Corporation. Copyright © 2024 Richtek Technology Corporation. All rights reserved. DSQ2532W-08

18.9 Reverse Current Protection

The reverse current from V_{OUT} to V_{IN} that flows through the body diode of the pass element instead of the normal conducting channel if the maximum V_{OUT} exceeds V_{IN} + 0.3V. In this case, the pass element may be damaged.

For example, if the output is biased above the input supply voltage level or the input supply has an instant drop during light load operation, that makes VIN < VOUT. As shown in Figure 7, an external Schottky diode can be added to prevent the pass element from being damaged by the reverse current.

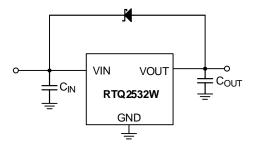


Figure 7. Application Circuit for Reverse Current Protection

18.10 Thermal Considerations

Thermal protection limits power dissipation in the RTQ2532W. When power dissipation on the pass element (PDIS = $(V_{IN} - V_{OUT}) \times I_{OUT}$) is too high and raises the junction operation temperature over 160°C, the OTP circuit starts the thermal shutdown function and turns the pass element off. The pass element turns on again after the junction temperature cools down by 20°C.

The output is shorted to ground when there is a short circuit at the output. This procedure can reduce the IC temperature and provide maximum safety to end users when an output short circuit occurs.

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

$\mathsf{P}\mathsf{D}(\mathsf{MAX}) = \big(\mathsf{T}\mathsf{J}(\mathsf{MAX}) - \mathsf{T}\mathsf{A}\big) \; / \; \theta \mathsf{J}\mathsf{A}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-toambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, $\theta_{JA(EVB)}$, is highly package dependent. For a VQFN-20L 5x5 package, the thermal resistance (specific EVB), $\theta_{JA(EVB)}$, is 32.51°C/W on a high effective thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as follows:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (32.51^{\circ}C/W) = 3.07W$ for a VQFN-20L 5x5 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, $\theta_{JA(EVB)}$. The derating curve in <u>Figure 8</u> allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

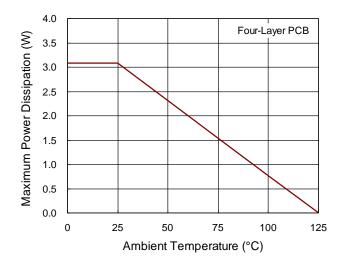
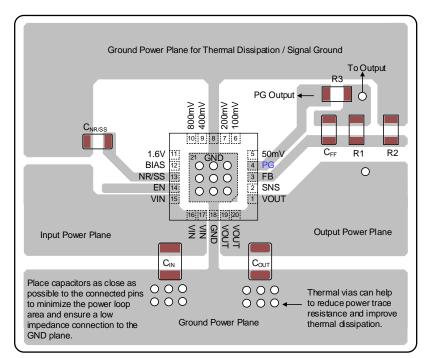



Figure 8. Derating Curve of Maximum Power Dissipation

18.11 Layout Considerations

For best performance of the RTQ2532W, the following PCB layout suggestions are highly recommended. All circuit components should be placed on the same side and as close to the respective LDO pin as possible. Place the ground return path connection to the input and output capacitor. Connect the ground plane with a wide copper surface for good thermal dissipation. Using vias and long power traces for the input and output capacitors connections is not recommended and has negative effects on performance. Figure 9 shows a layout example that reduces conduction trace loops, helping to minimize inductive parasitics and load transient effects while improving the circuit stability.

Figure 9. PCB Layout Guide

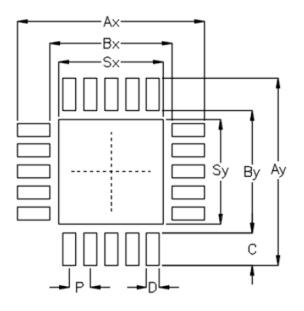
Note 10. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

19 Outline Dimension

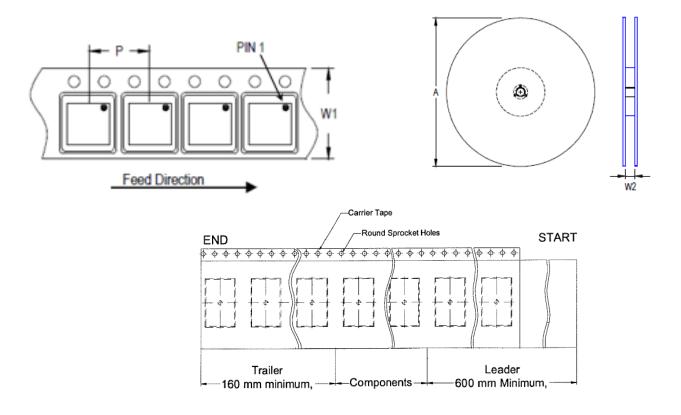
Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

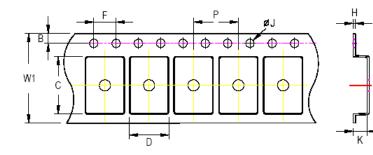

Symbol	Dimensions I	n Millimeters	Dimension	s In Inches
Symbol	Min	Мах	Min	Max
A	0.800	1.000	0.031	0.039
A1	0.000	0.050	0.000	0.002
A3	0.175	0.250	0.007	0.010
b	0.250	0.350	0.010	0.014
D	4.950	5.050	0.195	0.199
D2	3.100	3.200	0.122	0.126
E	4.950	5.050	0.195	0.199
E2	3.100	3.200	0.122	0.126
е	0.6	50	0.0)26
L	0.500	0.600	0.020	0.024

V-Type 20L QFN 5x5 Package

20 Footprint Information



Dookogo	Number of			F	ootprint	Dimens	ion (mm	ו)			Tolerance
Package	Pin	Р	Ax	Ay	Bx	Ву	С	D	Sx	Sy	Tolerance
V/W/U/XQFN5*5-20	20	0.65	5.80	5.80	3.80	3.80	1.00	0.40	3.25	3.25	±0.05



21 Packing Information

21.1 Tape and Reel Data

Package Type	Tape Size	Pocket Pitch	Reel Si	ze (A)	Units per	Trailer	Leader	Reel Width (W2)
	(W1) (mm)	(P) (mm)	(mm)	(in)	Reel	(mm)	(mm)	Min./Max. (mm)
QFN/DFN 5x5	12	8	180	7	1,500	160	600	12.4/14.4

C, D, and K are determined by component size.
The clearance between the components and
the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

Tape Size	W1	F	C	E	3	F	-	Ø	IJ	Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

21.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	3 reels per inner box Box A
2	HIC & Desiccant (1 Unit) inside	5	12 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	R	leel		Box		Carton			
Package	Size	Units	Item	Reels	Units	Item	Boxes	Unit	
		4 500	Box A	3	4,500	Carton A	12	54,000	
QFN/DFN 5x5	7	1,500	Box E	1	1,500	For Com	bined or Partial I	Reel.	

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

21.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com

RICHTEK

22 Datasheet Revision History

Version	Date	Description	Item
03	2022/12/6	Modify	Operation on page 4 Packing Information on page 21, 22, 23
04	2023/2/24	Modify	Functional Pin Description on page 2 Packing Information on page 21, 22, 23
05	2023/5/4	Modify	Pin Configuration on page 1 Functional Pin Description on page 2 Functional Block Diagram on page 3 Typical Application Circuit on page 8 Application Information on page 18
06	2023/5/23	Modify	Thermal Information on page 5
07	2024/3/20	Modify	Ordering Information on page 1 Thermal Information on page 6 Note 4 on page 8 Application Information on page 21, 22
08	2024/8/9	Modify	Changed the name of pin 4 to PG. Ordering Information on page 1 - Delete Quadrant 1 Information Simplified Application Circuit on page 1 - Added Simplified Application Circuit Typical Application Circuit on page 9, 10 - Modify Circuit Application Information on page 17, 22 - Modify Note Information Packing Information on page 26