

RTQ2078-QF

Functional Safety PMIC for Automotive Camera Sensor/ Module

1 General Description

The RTQ2078-QF is a highly integrated PMIC designed for automotive camera applications. It includes three step-down converters, and one high PSRR low-dropout (LDO) regulator

The high-voltage step-down converter operates with an input voltage range of up to 24V and is capable of sustaining a 36V load dump. It is suitable for a direct connection to a 12V battery or Power Over Coax (PoC) connection.

The RTQ2078-QF offers overvoltage and undervoltage monitors, and fault status reported by I²C for system fault reporting purpose.

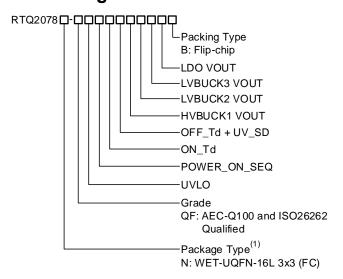
The device offers system design flexibility with I²C or factory-trimmed configurable functions, including adjustable output voltage for each channel, customizable power-on sequencing, and overvoltage (OV) or undervoltage (UV) monitor threshold voltage. The RTQ2078-QF is available in a WET-UQFN-16L 3x3 (FC) package with wettable flanks.

The recommended junction temperature range is -40° C to 125°C, and the ambient temperature range is -40° C to 125°C.

2 Applications

- Functional Safety Related Automotive Camera Modules
 - Surround View Camera
 - Front View Camera
 - Rear View Camera
 - Dash Cam DVR
 - Driver Monitoring System
 - · Cabin Monitor

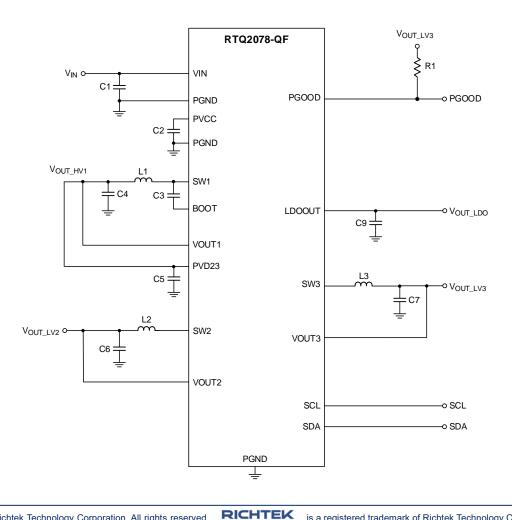
DSQ2078-QF-00


3 Features

- AEC-Q100 Grade 1 Qualified
- Compliance with ISO 26262 ASIL B
- Power-On Built-In Self Test (BIST) for OV/UV Monitors, I²C Cyclic Redundancy Check (CRC), and OTP Register CRC Protection
 - Three Step-Down Converters (HVBuck1, LVBuck2, and LVBuck3) with Peak-Current Mode PWM Operation and PSM Mode for Sentry Mode via I²C Setting
 - Fixed Switching Frequency at 2.1MHz
 - EMI Reduction features including Spread Spectrum and Phase-Shift Operation
 - HVBuck1 Supports Input Voltage from 4V to 24V with Load Dump Protection (36V for ≤ 400ms Transient), Adjustable Output Voltage, and up to 1.5A Output Current
 - LVBuck2 and LVBuck3 Support Input Voltage from 2.7V to 5V, Adjustable Output Voltage and up 1.5A Output Current
 - Pins Related to LVBuck2/LVBuck3 Can Floating if the Channel is Unused
- Low Dropout Regulator (LDO)
 - LDO with 2.7V to 5V Input Voltage, Adjustable Output Voltage, up to 0.3A Output Current, and High PSRR with 0.1A Output Current (60dB at 100kHz, 40dB at 1MHz)
- Input and Output Functions
 - Power and Error Status Indication via PGOOD
- Small Form Factor Wettable WET-UQFN-16L 3x3 (FC) Package with Compact BOM
- Ambient Temperature Range: -40°C to 125°C
- Junction Temperature Range: –40°C to 125°C

May

4 Ordering Information

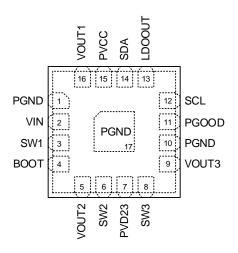

Note 1.

Richtek products are Richtek Green Policy compliant and marked with ⁽¹⁾ indicates compatible with the current requirements of IPC/JEDEC J-STD-020.

6 Simplified Application Circuit

5 Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.


Table of Contents

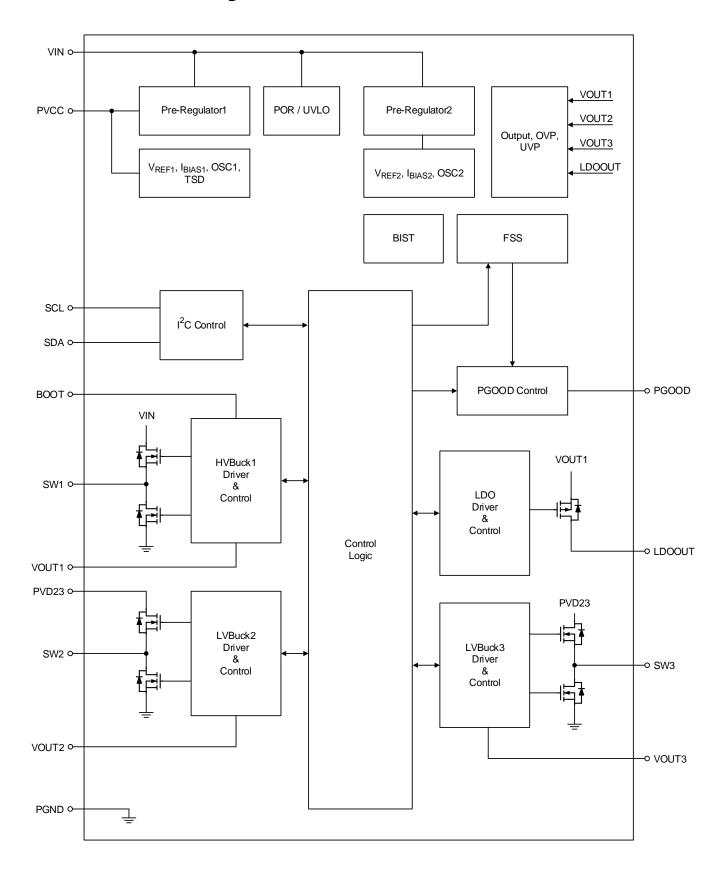
1	General Description1		17.7 Channel Floating Allowable2	22
2	Applications1		17.8 Reboot Operation2	22
3	Features 1		17.9 Power-Good and Error Indication2	22
4	Ordering Information2	18	Application Information2	23
5	Marking Information2		18.1 Device and Channel Enable Control2	23
6	Simplified Application Circuit2		18.2 Device Register Configuration Control2	23
7	Pin Configuration4		18.3 Device State Machine2	23
8	Functional Pin Description4		18.4 Power Sequence and Interval Time Setting2	27
9	Functional Block Diagram 6		18.5 Power-On/Off Control2	27
10	Absolute Maximum Ratings7		18.6 Output Voltage Setting2	29
11	ESD Rating7		18.7 Reset Function	29
12	Recommended Operating Conditions7		18.8 Protection Features2	29
13	Thermal Information7		18.9 Inductor Selection	33
14	Electrical Characteristics 8		18.10 Input and Output Capacitor Selection3	33
	14.1 System Characteristics		18.11 I ² C Interface	34
15	Typical Application Circuit18		18.12 Thermal Considerations	35
	15.1 General CIS Application18		18.13 Layout Considerations	36
16	Typical Operating Characteristics19	19	Functional Register Description	38
17	Operation21	20	Outline Dimension	57
	17.1 System Undervoltage and	21	Footprint Information	58
	Overvoltage Protection21	22	Packing Information	59
	17.2 Over-Temperature Protection21		22.1 Tape and Reel Data5	59
	17.3 Pre-Regulator21		22.2 Tape and Reel Packing6	30
	17.4 Peak Current Mode Control21		22.3 Packing Material Anti-ESD Property6	31
	17.5 Spread Spectrum Operation21	23	Datasheet Revision History6	ô2
	17.6 Phase-Shift Operation			

7 Pin Configuration

(TOP VIEW)

WET-UQFN-16L 3x3 (FC)

8 Functional Pin Description


Pin No.	Pin Name	Pin Function
1, 10, 17 (Exposed Pad)	PGND	IC thermal pad and power ground. It must be connected to the main ground plane for proper operation.
2	VIN	HVBuck1 and PMIC system input source power.
3	SW1	HVBuck1 switch node.
4	воот	HVBuck1 BOOT pin.
5	VOUT2	LVBuck2 output voltage feedback. It is recommended to directly connect the output capacitor node to this pin for better regulation.
6	SW2	LVBuck2 switch node.
7	PVD23	LVBuck2/3 input source power. Assume that PVD23 connects to the HVbuck1 output.
8	SW3	LVBuck3 switch node.
9	VOUT3	LVBuck3 output voltage feedback. It is recommended to directly connect the output capacitor node to this pin for better regulation.
11	PGOOD	Open-drain output, PMIC power status for indication. When PGOOD is in a high state, it indicates that all outputs are functioning normally.
12	SCL	I ² C interface serial clock input pin, open-drain. Connect to an external pull-up resistor is required.
13	LDOOUT	LDO output pin. It is recommended to directly connect the output capacitor node to this pin for better regulation.
14	SDA	I ² C interface serial data pin, open-drain. Connect to an external pull-up resistor is required.
15	PVCC	Internal analog power output. Connect a $1\mu F$ ceramic decouple capacitor between this pin and ground. Additional external loading to this pin is forbidden.

Pi	n No.	Pin Name	Pin Function
	16		HVBuck1 output voltage feedback. It is recommended to directly connect the output capacitor node to this pin for better regulation. This pin is also the LDO input source power and transmits the power through the internal path.

9 Functional Block Diagram

10 Absolute Maximum Ratings

(Note 2)

• VIN, SW1	-0.3V to 36V
• BOOT	-0.3V to 36V
• BOOT to SW1	–0.3V to 5V
• VOUT1, PVD23, VOUT2, SW2, SW3, VOUT3, LDOOUT,	
PVCC, PGOOD, SDA, SCL	-0.3V to 6.5V
Lead Temperature (Soldering, 10 sec.)	260°C
• Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C

Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

11 ESD Rating

(Note 3)

 ESD Susceptibility HBM (Human Body Model) ------ 2kV

Note 3. Devices are ESD sensitive. Handling precautions are recommended.

12 Recommended Operating Conditions

(Note 4)

Supply Voltage, VIN	4V to 24V
Supply Voltage, PVD23	2.7V to 5V
Ambient Temperature Range	40°C to 125°C
Junction Temperature Range	40°C to 125°C

Note 4. The device is not guaranteed to function outside its operating conditions.

13 Thermal Information

(Note 5)

	Thermal Parameter	WET-UQFN-16L 3x3	Unit
θЈА	Junction-to-ambient thermal resistance (JEDEC standard)	54.87	°C/W
θJC(Top)	Junction-to-case (top) thermal resistance	5.73	°C/W
θ JC(Bottom)	Junction-to-case (bottom) thermal resistance	12.4	°C/W
θЈВ	Junction-to-board thermal resistance	24	°C/W

Note 5. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report, AN061.

14 Electrical Characteristics

 $(T_A = T_J = -40^{\circ}C \text{ to } 125^{\circ}C, \ V_{IN} = 6V, \ V_{OUT_HV1} = 3.6V, \ V_{OUT_LV2} = 1.1V, \ V_{OUT_LV3} = 1.8V, \ V_{OUT_LDO} = 3.3V, \ unless otherwise$ specified.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
System						
VIN Undervoltage Lock-out Falling	Vuvlo_f		3.135	3.3	3.465	V
VIN Undervoltage Lock-out Rising	Vuvlo_r		3.61	3.8	3.99	V
VIN Overvoltage Rising Protection	VOVP_VIN		24.735	25.5	26.265	V
VIN Overvoltage Hysteresis	VOVP_HYS_VIN		5	6	7	V
Pre-Regulator (N	<u>ote 6</u>)					
PVCC Voltage Range	VPVCC		4.4	4.65	4.9	V
CH1_HVBuck1						
Input Voltage Range	VIN_HV1	VIN_HV1 = VIN	4		24	V
Output Voltage Range	Vout_HV1	VIN_HV1 = 4V to 24V	2.7		5	V
Output Voltage Accuracy	VOUT_ACC_HV1_FPWM	V _{OUT} _{HV1} = 2.7V to 5V, V _{IN} _{HV1} = 6V, 9V, 12V, I _{OUT} _{HV1} = 0 to 1.5A, FPWM	-1.5		1.5	%
Soft-Start Time	tss_HV1	Time from VOUT_HV1 to rise from 10% to 90% of target value, no load	500	1000	1500	μS
Switching Frequency	fsw_HV1		1.89	2.1	2.31	MHz
Spread Spectrum Range	fssp			12		%
High-Side MOSFET On- Resistance	Ron_ug_hv1			210		mΩ
Low-Side MOSFET On- Resistance	RON_LG_HV1			120		mΩ
Minimum On-Time	tmin_on_hv1				40	ns
Minimum Off-Time	tMIN_OFF_HV1				50	ns
Positive Inductor Peak Current Limit	ICL_PK_HV1		1.9	2.5	3.1	А
Positive Inductor Valley Current Limit	ICL_VALLEY_HV1			1.6		А
Negative Inductor Peak Current Limit	ICL_N_PK_HV1	HVBuck1 in FPWM	1.3	1.8	2.3	А

DSQ2078-QF-00

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Discharge Resistor	RDIS_HV1		20	50	80	Ω
HVBuck1 Output Undervoltage Falling Threshold Detection	VUVP_HV1			80		%
HVBuck1 Output Undervoltage Falling Threshold Detection Accuracy	VUVP_ACC_HV1		-1.3		1.3	%
HVBuck1 Output Overvoltage Rising Threshold Detection	VOVP_HV1			110		%
HVBuck1 Output Overvoltage Rising Threshold Detection Accuracy	Vovp_acc_hv1		-1.3		1.3	%
CH2_LVBuck2						
Input Voltage Range	VIN_LV2		2.7		5	V
Output Voltage Range	VOUT_LV2		0.6	1.1	1.9	٧
Output Voltage Accuracy	VOUT_ACC_LV2_FPWM	V _{OUT_LV2} = 0.6V to 1.9V, V _{IN_LV2} = 3.6V, I _{OUT_LV2} = 0A to 1.5A, FPWM	-1.5		1.5	%
Soft-Start Time	tss_Lv2	Time for VOUT_LV2 to rise from 10% to 90% of target value, no load	600	1200	1800	μS
Switching Frequency	fsw_LV2		1.89	2.1	2.31	MHz
Spread Spectrum Range	fssp			12		%
Hide-Side MOSFET On- Resistance	RON_UG_LV2			56		mΩ
Low-Side MOSFET On- Resistance	Ron_lg_lv2		-	34		mΩ
Minimum On-Time	tmin_on_lv2				44	ns
Positive Inductor Peak Current Limit	ICL_PK_LV2		2.1	2.5	2.9	А
Positive Inductor Valley Current Limit	ICL_VALLEY_LV2			1.8		A
Negative Inductor Peak Current Limit	ICL_N_PK_LV2	LVBuck2 in FPWM	0.7	1.7	2.9	А

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Discharge Resistor	RDIS_LV2		6	9	14	Ω
LVBuck2 Output Undervoltage Falling Threshold Detection	VUVP_LV2			95		%
LVBuck2 Output Undervoltage Falling Threshold Detection Accuracy	VUVP_ACC_LV2		-1.3		1.3	%
LVBuck2 Output Overvoltage Rising Threshold Detection	VOVP_LV2			105		%
LVBuck2 Output Overvoltage Rising Threshold Detection Accuracy	VOVP_ACC_LV2		-1.3		1.3	%
PVD23 Overvoltage Rising Protection	VOVP_PVD23		5.35	5.8	6.25	V
PVD23 Overvoltage Hysteresis	VOVP_HYS_PVD23			580		mV
CH3_LVBuck3						
Input Voltage Range	VIN_LV3		2.7		5	V
Output Voltage Range	Vout_Lv3		0.6	1.8	1.9	V
Output Voltage Accuracy	VOUT_ACC_LV3_FPWM	Vout_Lv3 = 0.6V to 1.9V, Vin_Lv3 = 3.6V, Iout_Lv3 = 0A to 1.5A, FPWM	-1.5		1.5	%
Soft-Start Time	tss_LV3	Time from V _{OUT_LV3} to rise from 10% to 90% of target value, no load	600	1200	1800	μS
Switching Frequency	fsw_Lv3		1.89	2.1	2.31	MHz
Spread-Spectrum Range	fssp			12		%
High-Side MOSFET On- Resistance	RON_UG_LV3			56		mΩ
Low-Side MOSFET On- Resistance	RON_LG_LV3			34		mΩ
Minimum On-Time	tmin_on_lv3				44	ns
Positive Inductor Peak Current Limit	ICL_PK_LV3		2.1	2.5	2.9	А

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Positive Inductor Valley Current Limit	ICL_VALLEY_LV3			1.8		А
Negative Inductor Peak Current Limit	ICL_N_PK_LV3	LVBuck3 in FPWM	0.7	1.7	2.9	А
Output Discharge Resistor	RDIS_LV3		6	9	14	Ω
LVBuck3 Output Undervoltage Falling Threshold Detection	VUVP_LV3			95		%
LVBuck3 Output Undervoltage Falling Threshold Detection Accuracy	VUVP_ACC_LV3		-1.3		1.3	%
LVBuck3 Output Overvoltage Rising Threshold Detection	VOVP_LV3			105		%
LVBuck3 Output Overvoltage Rising Threshold Detection Accuracy	VOVP_ACC_LV3		-1.3		1.3	%
PVD23 Overvoltage Rising Protection	VOVP_PVD23		5.35	5.8	6.25	V
PVD23 Overvoltage Hysteresis	VOVP_HYS_PVD23			580		mV
CH4_LDO						
Input Voltage Range	VIN_LDO		2.7		5	V
Output Voltage Range	Vout_ldo		1.8	3.3	3.5	V
Output Voltage Accuracy	VOUT_ACC_LDO	VOUT_LDO = 1.8V to 3.5V, (VIN_LDO - VOUT_LDO) \geq 0.3V, IOUT_LDO = 0mA to 300mA	-1.5		1.5	%
Soft-Start Time	tss_LDO	Time for V _{OUT_LDO} to rise from 10% to 90% of target value, no load.	200	700	1100	μs
Dropout Voltage	VDROP_300_LDO	IOUT_LDO = 300mA			300	m\/
(<u>Note 7</u>)	VDROP_150_LDO	IOUT_LDO = 150mA			150	mV
Maximum Output Current	IOUT_MAX_LDO		300			mA
Output Current Limit	ICL_LDO		345	450	555	mA

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

RTQ2078-QF

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Discharge Resistor	RDIS_LDO		48	76	104	Ω
LDO Output Undervoltage Falling Threshold Detection	Vuvp_ldo			95		%
LDO Output Undervoltage Falling Threshold Detection Accuracy	VUVP_ACC_LDO		-1.3		1.3	%
LDO Output Overvoltage Rising Threshold Detection	VOVP_LDO			105		%
LDO Output Overvoltage Rising Threshold Detection Accuracy	Vovp_acc_ldo		-1.3		1.3	%
I/O Control						
PGOOD Low-Level Output Voltage	Vol_PGOOD	Current into the PGOOD pin is equal to 5mA			200	mV
PGOOD Input Leakage Current	ILEAK_PGOOD	1.8V is applied on the PGOOD pin			1	μА
PGOOD Delay Time	tpgood_dly	Time interval between the completion of the soft-start process for the last channel and the subsequent assertion of the PGOOD signal	9	10	11	ms

Note 6. PVCC is the pre-regulator output voltage only for internal circuitry. External loading on the PVCC pin is forbidden.

www.richtek.com

Note 7. Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100mV below its nominal value.

14.1 System Characteristics

The following specifications are guaranteed by design and are not performed in production testing. ($T_A = T_J = -40^{\circ}\text{C}$ to 125°C, $V_{IN} = 6\text{V}$, $V_{OUT_HV1} = 3.6\text{V}$, $V_{OUT_LV2} = 1.1\text{V}$, $V_{OUT_LV3} = 1.8\text{V}$, $V_{OUT_LDO} = 3.3\text{V}$, unless otherwise specified.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
System		,	•	•		•
Quiescent Current of VIN	IQ_ON	EN = H, VuvLo_R ≤ VIN ≤ 24V, VouT_Hv1 ties to PVD23 and PVD45, all channels are ON, no load.		20		mA
Quiescent Current of VIN	IQ_OFF	EN = H, V _{UVLO_R} ≤ V _{IN} ≤ 24V, V _{OUT_HV1} ties to PVD23 and PVD45, all channels are OFF.		3		mA
Over- Temperature Protection	TTSD			170		°C
Over- Temperature Protection Hysteresis	TTSD_HYS			20		°C
CH1_HVBuck1						
Maximum Output Current	IOUT_MAX_HV1	Depends on the input voltage and the output voltage	1.5			А
Load Transient	VLOAD_TRAN_HV1_FPWM	V _{OUT} _{HV1} = 3.6V, V _{IN} _{HV1} = 6V/9V/12V, I _{OUT} _{HV1} = 10mA to 0.5A to 10mA, 1μs, FPWM	-150		150	mV
Line Transient	VLINE_TRAN_HV1_FPWM	VOUT_HV1 = 3.6V, VIN_HV1 = 5V to 18.5V to 5V, 100μs, IOUT_HV1 = 0.5A, FPWM	-50		50	mV
Load Regulation	VLOAD_REG_HV1	V _{OUT} _{_HV1} = 3.6V, V _{IN} _{_HV1} = 6V/9V/12V, Δ _{IOUT} _{_BK1} = 1.5A, FPWM			0.1	%
Line Regulation	VLINE_REG_HV1	VOUT_HV1 = 3.6V, VIN_HV1 = 5V to 18.5V, IOUT_HV1 = 1.5A			1	%
Output Ripple Voltage	VRIPPLE_HV1_FPWM	Peak to peak in one switching cycle, FPWM, SSP_EN bit = 0			20	mVpp
CH2_LVBuck2						
Maximum Output Current	IOUT_MAX_LV2		1.5			А
Load Transient	VLOAD_TRAN_LV2_FPWM	VOUT_LV2 = 1.1V, VIN_LV2 = 3.6V, IOUT_LV2 = 100mA to 0.5A to 100mA, 1µs, FPWM	-50		50	mV

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

13

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Line Transient	VLINE_TRAN_LV2_FPWM	VOUT_LV2 = 1.1V, VIN_LV2 = 3V to 5V to 3V, 50μs, IOUT_LV2 = 10mA/0.75A/1.5A, FPWM	-50		50	mV
Load Regulation	VLOAD_REG_LV2	V _{OUT_LV2} = 1.1V, V _{IN_LV2} = 3.6V, ΔI _{OUT_BK2} = 1.5A, FPWM			0.15	%
Line Regulation	VLINE_REG_LV2	VOUT_LV2 = 1.1V, VIN_LV2 = 2.7V to 5V, IOUT_LV2 = 1.5A			1	%
Output Ripple Voltage	VRIPPLE_LV2_FPWM	Peak to peak in one switching cycle, FPWM, SSP_EN bit = 0			10	mVpp
CH3_LVBuck3						
Maximum Output Current	IOUT_MAX_LV3		1.5			А
Load Transient	VLOAD_TRAN_LV3_FPWM	V _{OUT_LV3} = 1.8V, V _{IN_LV3} = 3.6V, I _{OUT_LV3} = 100mA to 0.5A to 100mA, 1μs, FPWM	-50		50	mV
Line Transient	VLINE_TRAN_LV3_FPWM	VOUT_LV3 = 1.8V, VIN_LV3 = 3V to 5V to 3V, 50μs, IOUT_LV3 = 10mA/0.75A/1.5A, FPWM	-50		50	mV
Load Regulation	VLOAD_REG_LV3	VOUT_LV3 = 1.8V, VIN_LV3 = 3.6V, ΔIOUT_BK3 = 1.5A, FPWM			0.15	%
Line Regulation	VLINE_REG_LV3	V _{OUT_LV3} = 1.8V, V _{IN_LV3} = 2.7V to 5V, I _{OUT_LV3} = 1.5A			1	%
Output Ripple Voltage	VRIPPLE_LV3_FPWM	Peak to peak in one switching cycle, FPWM, SSP_EN bit = 0			10	mVpp
CH4_LDO						
Power Supply	Debb	VOUT_LDO = 3.3V, VIN_LDO ≥ 3.6V, IOUT_LDO = 100mA, f = 100kHz Disturbing signal = 100mV		60		dB
Rejection Ratio	PSRR	VOUT_LDO = 3.3V, VIN_LDO ≥ 3.6V, IOUT_LDO = 100mA, f = 100kHz to 1MHz Disturbing signal = 100mV		40		dB
Load Transient	VLOAD_TRAN_LDO	VOUT_LDO = 3.3V, VIN_LDO = 3.6V, IOUT_LDO = 10mA to 0.2A to 10mA, 1μs, CO_LDO = 2.2μF	-25		25	mV
Line Transient	VLINE_TRAN_LDO	VOUT_LDO = 3.3V, VIN_LDO step 600mV, 10µs, the LDO is not in dropout condition, IOUT_LDO = 1mA/0.3A	-25		25	mV

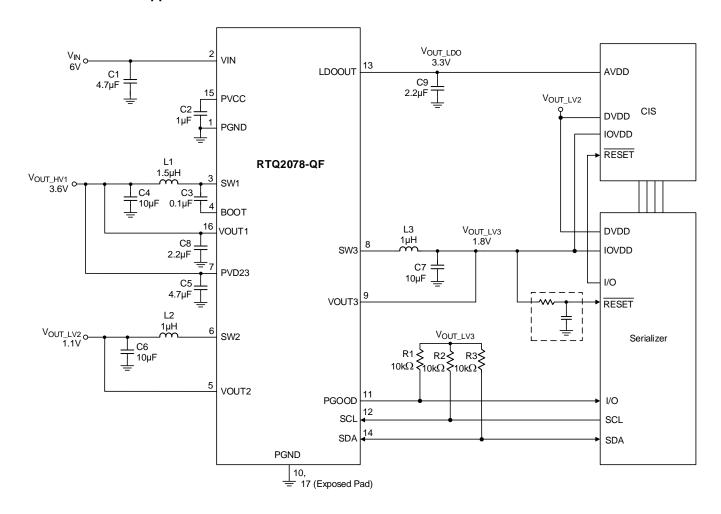
Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK is a registered trademark of Richtek Technology Corporation.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
I ² C			1		l	
SCL, SDA High- Level Input Threshold Voltage	VIH_I2C		1.2			V
SCL, SDA Low- Level Input Threshold Voltage	VIL_I2C				0.4	V
SCL Clock Frequency	fscL				1000	kHz
(Repeated) Start Hold Time	thd;sta	Hold time (repeated) start condition. After this period, the first clock pulse is generated.	0.26			μs
SCL Clock Low Time	tLOW		0.5			μS
SCL Clock High Time	thigh		0.26			μS
(Repeated) Start Setup Time	tsu;sta	Set-up time for a repeated START condition	0.26			μs
SDA Data Hold Time	thd;dat		0			ns
SDA Set-up Time	tsu;dat		50			ns
STOP Condition Setup Time	tsu;sto		0.26			μs
Bus Free Time between Stop and Start Condition	tBUF		0.5			μs
Rising Time of Both SDA and SCL Signals	tR				120	ns
Falling Time of Both SDA and SCL Signals	tF				120	ns
SDA Output Low Sink Current	IOL_I2C	SDA voltage = 0.4V	2			mA
Protection Time I	Deglitch					
HVBuck1 Output UVP Deglitch Time	tUVP_DEG_HV1			50		μS
LVBuck2 Output UVP Deglitch Time	tuvp_deg_lv2			50		μs

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

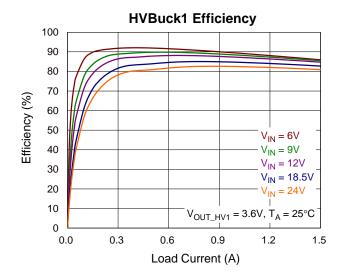
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
LVBuck3 Output UVP Deglitch Time	tuvp_deg_lv3			50		μS
LDO Output UVP Deglitch Time	tuvp_deg_ldo			50		μs
HVBuck1 Output OVP Deglitch Time	tOVP_DEG_HV1			50		μS
LVBuck2 Output OVP Deglitch Time	tovp_deg_lv2			50		μS
LVBuck3 Output OVP Deglitch Time	tovp_deg_lv3			50		μs
LDO Output OVP Deglitch Time	tovp_deg_ldo			50		μs
PVD23 OVP Rising Deglitch Time	tovp_r_deg_pvd23	ΔV = 700mV		5	6	μs
PVD23 OVP Falling Deglitch Time	tovp_F_DEG_PVD23	ΔV = 700mV		5	6	μS
HVBuck1 OCP Deglitch Time	tOCP_DEG_HV1			1		ms
LVBuck2 OCP Deglitch Time	tocp_deg_lv2			1		ms
LVBuck3 OCP Deglitch Time	tOCP_DEG_LV3			1		ms
LDO OCP Deglitch Time	tocp_deg_ldo			1		ms
Component Cons	straint (Note 4)					
Effective Output	LHV1		1	1.5	2	
Effective Output Inductance	L _L V2		0.68	1	1.2	μΗ
	LLV3		0.68	1	1.2	
Effective Boot Capacitance	Своот		0.07	0.1	0.13	μF
Effective PVCC Capacitance	CPVCC		0.3	1	1.4	μF
	CIN_HV1		1.5	4.7	10	
Effective Input Capacitance	CIN_PVD23		1.5	4.7	10	μF
	CIN_VOUT1	For LDO input	0.7	2.2	4	

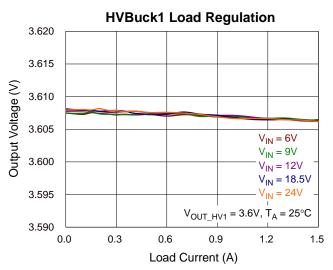


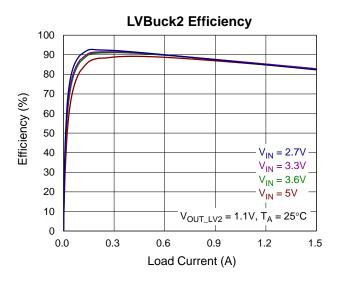
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
	Co_HV1		3.3	10	14	
Effective Output	Co_LV2		4.5	10	14	
Capacitance	Co_LV3		4.5	10	14	μF
	Co_LDO		0.7	2.2	33	
Output Capacitance ESR for HVBuck1, LVBuck2, LVBuck3, and LDO	Co_esr			10	20	mΩ

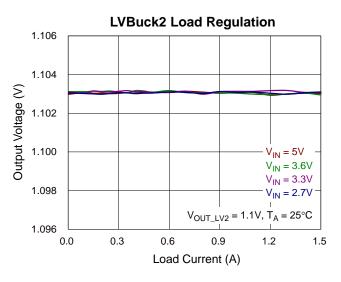
15 Typical Application Circuit

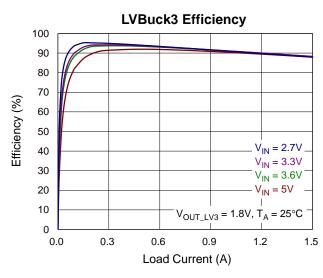
15.1 General CIS Application

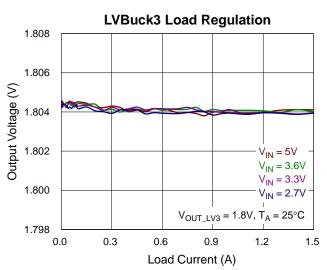

Table 1. Recommended Component List for Evaluation Board

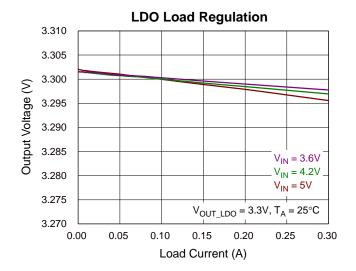

Reference	Qty	Part Number	Description	Package	Manufacturer
C1	1	GCJ31CC71H475KA01	4.7μF/50V/X7S	1206	MURATA
C2	1	GRT155C81A105KE01	1μF/10V/X6S	0402	MURATA
C3	1	GRT155R71C104KE01	0.1μF/16V/X7R	0402	MURATA
C4, C6, C7	3	GRT188C81A106ME13	10μF/10V/X6S	0603	MURATA
C5	1	GRT188C81C475KE13	4.7μF/16V/X6S	0603	MURATA
C8, C9	2	GRT155C81A225KE13	2.2μF/10V/X6S	0402	MURATA
L1	1	TFM201610ALMA1R5MTAA	1.5μH/3.1A/85mΩ	0806	TDK
L2, L3	2	TFM201610ALMA1R0MTAA	1μH/3.7A/50m Ω	0806	TDK
R1	1	MR02X1002FAL	10kΩ/1%	0201	WALSIN

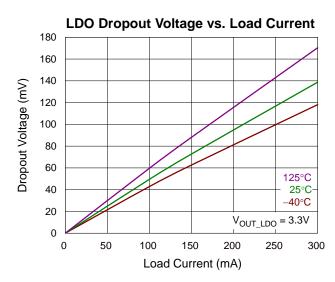

www.richtek.com

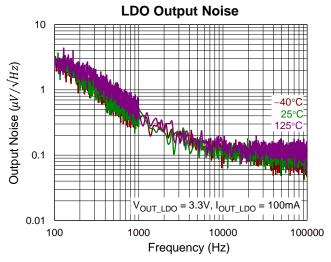


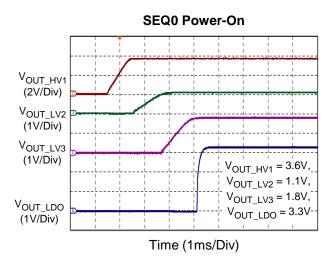

16 Typical Operating Characteristics








Copyright © 2024 Richtek Technology Corporation. All rights reserved.





DSQ2078-QF-00

17 Operation

The RTQ2078-QF is a highly integrated power management integrated circuit (PMIC) for automotive camera system. It includes three step-down converters (HVBuck1, LVBuck2, and LVBuck3) and one generic LDO.

17.1 System Undervoltage and Overvoltage Protection

The RTQ2078-QF disables all channels if the VIN voltage falls below the Undervoltage Lock-Out level ($VUVLO_F$) and the duration time is longer than $32\mu s$. The device initializes in its default state after the VIN voltage recovers from $VUVLO_R$.

When the VIN voltage reaches the overvoltage protection level (VovP_R_VIN), the step-down converters and LDO are disabled immediately. Then the IC enters the "Regulator Off" state, and PGOOD changes from "H" to "L" to indicate the IC is in a fault status. When VIN falls below 19.5V and the duration time is longer than 5μ s, then the RTQ2078-QF resumes operation automatically.

If the VIN voltage exceeds 20V, ensure the start-up rise slope is below $80\text{mV}/\mu\text{s}$. This cannot be controlled by the SEQ_CTRL bit 0x00[0] for power on/off sequences to guarantee correct execution of the overvoltage protection function.

17.2 Over-Temperature Protection

The RTQ2078-QF features thermal shutdown (TSD) protection. When the junction temperature exceeds the typical threshold of 170°C, the TSD function is activated, resulting in the disabling all outputs as the device enters the "Regulator Off" state. Meanwhile, the PGOOD status also changes from "H" to "L" state to indicate the IC is in a fault status. The RTQ2078-QF will automatically resume normal operation once the junction temperature falls below the TSD threshold with a 20°C hysteresis band and VIN is below 19.5V.

17.3 Pre-Regulator

The device integrates a 4.58V linear regulator (PVCC) supplied by VIN to provide power to the internal circuitry. The PVCC is "NOT" allowed to power any other device or circuitry. A $1\mu F$ decoupling capacitor must be connected between PVCC and PGND to filter noise, and it needs to be placed as close as possible to the PVCC pin.

17.4 Peak Current Mode Control

The three step-down converters utilize peak current mode control. At the beginning of each clock cycle, the internal high-side MOSFET turns on, allowing the current to ramp up in the inductor. By comparing the inductor peak current signal with the internal compensation signal derived from the feedback voltage, the turn-on time of high-side and low-side MOSFETs in every switching cycle are determined. In other words, the inductor current is used to control the duty-cycle and output voltage regulation of the converter.

17.5 Spread Spectrum Operation

Due to the periodicity of the switching signal, energy tends to concentrate at the fundamental frequency and its N-order harmonics. This concentration of energy can result in radiation that may cause the EMI issues. To address this, the RTQ2078-QF is equipped with a spread spectrum function designed to reduce EMI and ensure compliance with automotive EMC standards (CISPR 25). The spread spectrum function employs a pseudo-random sequence to modulate the switching frequency, allowing it to vary randomly within a range of 0% to 12%. For example, with a 2.1MHz typical switching frequency, the actual frequency will randomly oscillate between 2.1MHz and 2.352MHz. As a result, the RTQ2078-QF effectively prevents the switching frequency from interfering with the 1.8MHz AM band, which is a critical requirement of CISPR 25.

RICHTEK is a registered trademark of Richtek Technology Corporation.

17.6 Phase-Shift Operation

The RTQ2078-QF supports phase-shift operation to prevent all step-down converters from switching simultaneously, further reducing the radiation quantity of energy. The phase-shift difference in the clock between each step-down converter automatically changes based on the numbers of enabled channels. For example, when two step-down converters are in use, the initial turn-on time between two high-side MOSFETs has a 180-degree phase difference. Likewise, there is a 120-degree phase difference when three step-down converters are in use.

17.7 Channel Floating Allowable

To save PCB layout space and reduce material costs, the unused low-voltage step-down converters (CH2/CH3) can be left with floating pins, eliminating the need for inductors and output capacitors. The RTQ2078-QF automatically detects the pin status during the power-on procedure to determine whether the channel is used or not. After that, any malfunction in an unused channel will not impact the device operation.

17.8 Reboot Operation

The RTQ2078-QF features a reboot function applicable when VIN does not exceed 20V.

If the register bit 0x00[1] is set to 1, the device will disable all channels upon detecting a fault event. It will then exit the Fail-safe state and reboot, while preserve the record of the fault event. Conversely, if the register bit at 0x00[1] is set to 0, the IC remains in the Fail-safe state.

17.9 Power-Good and Error Indication

The RTQ2078-QF features an open-drain output pin named PGOOD (Power-Good) to indicate both the output voltage status of all channels and errors. Connect a pull-up resistor from the PGOOD pin to an external voltage. When the last channel in the power-on sequence reaches 90% of its target output voltage, the PGOOD signal will be pulled high to indicate a "Power-Good" status after a 10ms delay.

Table 2. Unused Channel Pin Considerations

Channel Unused Pin Number Unused Pin Name

Unused Channel	Unused Pin Number	Unused Pin Name	Pin Configuration
	5	VOUT2	Floating
LVBuck2	6	SW2	Floating
	7	PVD23	Connect to a stable voltage
	7	PVD23	Connect to a stable voltage
LVBuck3	8	SW3	Floating
	9	VOUT3	Floating
LDO	13	LDOOUT	Floating with minimum effective output capacitance
PGOOD	11	PGOOD	Floating
I ² C	12	SCL	Connect to ground
10	14	SDA	Connect to ground

18 Application Information

(Note 8)

18.1 **Device and Channel Enable Control**

When the supply voltage VIN reaches the power-on reset level 2.7V (typical), the device is enabled and ready to receive I²C commands for configuration. When VIN exceeds the UVLO rising voltage and the SEQ_CTRL register at 0x00[0] = 1, the power-on sequence gets started. The channels are sequenced power-off if the SEQ_CTRL register at 0x00[0] = 0. All channels shut down immediately without any sequence once VIN falls below UVLO falling voltage.

Device Register Configuration Control

Write access to the registers or bits marked as "CFG_LOCK (Configured Lock)" is restricted via the TM_PASS_CODE registers at 0x20 and 0x21. Before the configuration of the registers can be changed, the correct password must be written to enter Guest Mode to unlock the control registers. To exit Guest Mode and lock the control registers, thereby preventing unexpected operations, an incorrect password must be entered once changes are finalized.

Device State Machine

There are seven main states listed in the Table 3.

Table 3. Device State

State	Description	Entry	Exit
Power-Off	The device is in non-operation state.	V _{IN} ≤ 2.5V (typical)	V _{IN} ≥ 2.7V (typical)
Regulator Off	The device loads OTP for the default setting and passes OTP CRC checksum value comparison. All channels are still disabled and the PGOOD signal are driven at a low state.	 From Power-Off Pass OTP CRC checksum value comparison From Standby/Power-On VIN ≤ VUVLO_F Fault event (VIN OVP, VPVD23 OVP, TSD) RESET behavior (RESET bit) From Active/Alarm VIN ≤ VUVLO_F Fault event (VIN OVP, VPVD23 OVP, TSD) RESET behavior (RESET bit) SEQ_CTRL_bit 0x00[0] = 0 From Fail-Safe VIN ≤ VUVLO_F RESET behavior (RESET bit) RESET behavior (RESET bit) RESET behavior (RESET bit) 	To Power-Off VIN ≤ 2.5V (typical) To BIST VIN ≥ VUVLO_R and no fault event (VIN OVP, VPVD23 OVP, TSD) and no RESET behavior (RESET bit)

State	Description	Entry	Exit
Standby	The device passes built-in self- test (BIST) and waits for an I ² C command to enable all channels.	BIST pass	To Regulator Off VIN ≤ VUVLO_F Fault event (VIN OVP, VPVD23 OVP, TSD) To Power-On SEQ_CTRL 0x00[0] = 1 AND No RESET behavior (RESET bit)
Power-On	Channel power-on procedure gets started.	From Standby • SEQ_CTRL 0x00[0] = 1 AND No RESET behavior (RESET bit)	To Regulator Off VIN ≤ VUVLO_F Fault event (VIN OVP, VPVD23 OVP, TSD) To Active The output voltages of all enabled channels rise to 90% of target values To Fail-Safe Fault event (CH Vo UVP, CH Vo OVP) if the register 0x0F = 1Fh, 0x10 = 1Fh Fault event (CH OCP)
Active	The output voltages of all enabled channels rise to 90% of target values. The PGOOD signal changes to high state to indicate the power status and any fault events.	From Power-On All enabled channels output voltages rise to 90% of target values From Alarm All fault registers (0x11, 0x13, 0x14, 0x15) event = 0	To Regulator Off VIN ≤ VUVLO_F Fault event (VIN OVP, VPVD23 OVP, TSD) RESET behavior (RESET bit) SEQ_CTRL 0x00[0] = 0 To Alarm Fault event (CH Vo UVP, CH Vo OVP) if register 0x0F = 00h, 0x10 = 00h Any fault register (0x11 to 0x15, except 0x12[6]) event = 1 To Fail-Safe Fault event (CH Vo UVP, CH Vo OVP) if register 0x0F = 1Fh, 0x10 = 1Fh Fault event (CH OCP)

State	Description	Entry	Exit
Alarm	When a fault event is detected but the channel is not turned off, the PGOOD signal changes to low state to indicate power status and fault event.	From Active • Fault event (CH Vo UVP, CH Vo OVP) if register 0x0F = 00h, 0x10 = 00h • Any fault register (0x11, 0x13, 0x14, 0x15) event = 1	To Regulator Off VIN ≤ VUVLO_F Fault event (VIN OVP, VPVD23 OVP, TSD) RESET behavior (RESET bit) SEQ_CTRL 0x00[0] = 0 To Active All fault registers (0x11, 0x13, 0x14, 0x15) event = 0 To Fail-Safe Fault event (CH VO UVP, CH VO OVP) if register 0x0F = 1Fh, 0x10 = 1Fh Fault event (CH OCP)
Fail-safe	the PGOOD signal changes to a low state to indicate the	 BIST fail Fault event (CH Vo UVP, CH Vo OVP) if register 0x0F = 1Fh, 0x10 = 1Fh Fault event (CH OCP) 	To Regulator Off VIN ≤ VUVLO_F RESET behavior (RESET bit) REBOOT_ACT 0x00[1] = 1

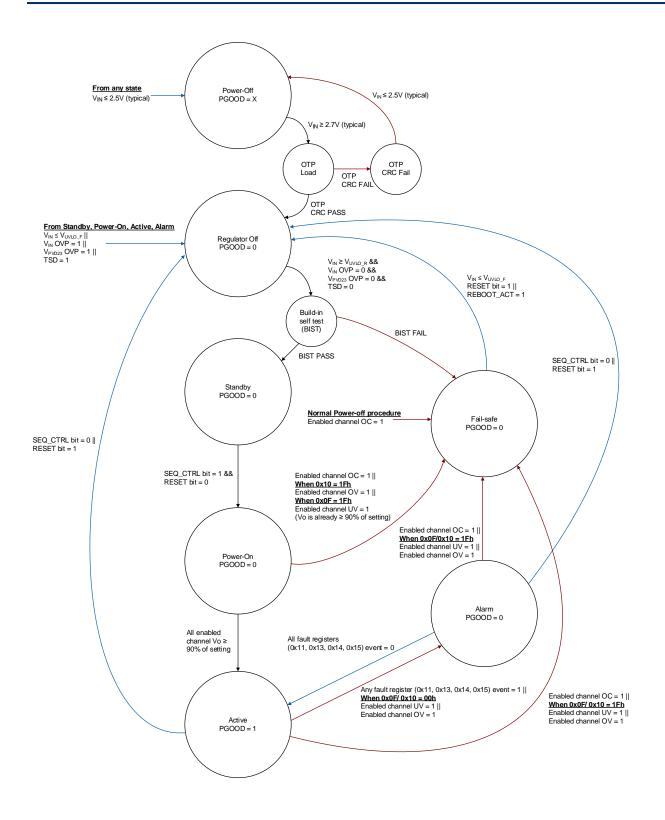


Figure 1. State Diagram

DSQ2078-QF-00

18.4 **Power Sequence and Interval Time Setting**

The RTQ2078-QF supports four power-on sequences, as shown in Table 4. Only when the SEQ_CTRL register at 0x00[0] = 0, the power sequence register at 0x02[2:0] and the interval time register at 0x02[6:3] between adjacent channels can be configured by I²C. The new settings will be applied at the next power-up. The RTQ2078-QF is also equipped with the OTP36 register at 0xE4[6:0] to provide OTP (One-Time Programmable) settings of power sequence and interval time to establish factory default settings.

SEQ No.	Sequence						
SEQ0	CH1	CH2	CH3	CH4			
SEQ1	CH1	CH4	СНЗ	CH2			
SEQ2	CH1	CH3	CH4	CH2			
SEQ3	CH1	CH2, CH3, CH4					

Table 4. Power-On Sequence

18.5 **Power-On/Off Control**

There are methods using VUVLO, the SEQ_CTRL register bit at 0x00[0] or the RESET register bit at 0x0D[4] to flexibly control the RTQ2078-QF power sequence for different requirements and applications. The power-off sequence is the reverse order of the power-on sequence.

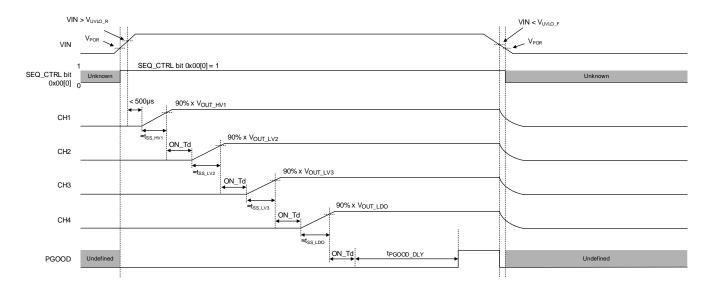


Figure 2. Example of SEQ0 Power Sequence Triggered by VuvLo

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

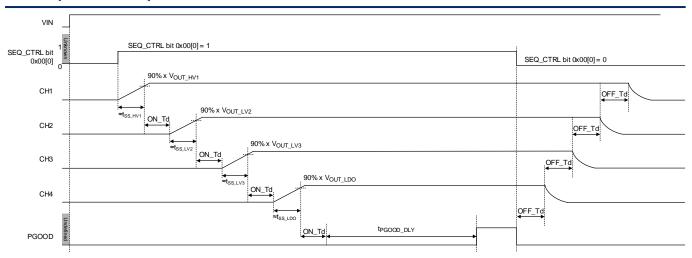


Figure 3. Example 1 of SEQ0 Power Sequence Triggered by SEQ_CTRL

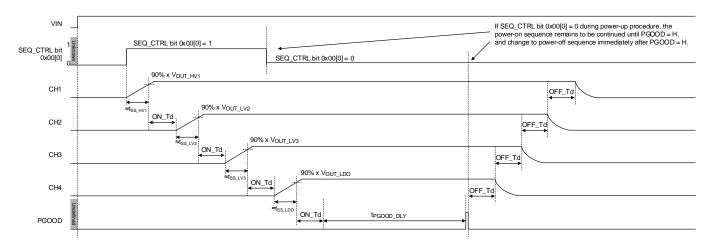


Figure 4. Example 2 of SEQ0 Power Sequence Triggered by SEQ_CTRL

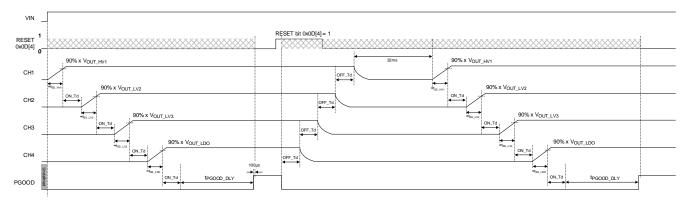


Figure 5. Example of SEQ0 Power Sequence Triggered by the RESET bit

18.6 **Output Voltage Setting**

The output voltage settings of all rails are controlled through I²C by configuring the relevant registers. The RTQ2078-QF also equipped with OTP37 to OTP38 registers, ranging from 0xE5 to 0xE6, to enable one-time programmable settings for corresponding output voltages, establishing them as the factory default settings.

HVBuck1, LVBuck2 and LVBuck3 18.6.1

HVBuck1 output voltage can be set via the register at 0x03[3:0] from 2.7V to 5V, and the default voltage is 3.6V. LVBuck2 output voltage can be set via the register at 0x04[4:0] from 0.6V to 1.9V, and the default voltage is 1.1V. LVBuck3 output voltage can be set via the register at 0x05[4:0] from 0.6V to 1.9V, and the default voltage is 1.8V.

18.6.2 LDO

LDO output voltage can be set via the register at 0x06[4:0] from 1.8V to 3.5V. The default voltage is set at 3.3V.

18.7 **Reset Function**

The RTQ2078-QF is equipped with a RESET register at 0x0D[4] to reset the device when VIN does not exceed 20V. The device activates the RESET function 100µs after the PGOOD signal asserts high.

The RESET_ACT register bit at 0x0D[3] offers two configuration options:

- If register bit 0x0D[3] = 0, all registers, except for the sequence control related registers at 0x02[4:0] and fault event indication registers at 0x11, 0x13, 0x14, 0x15 are reset to their default values. The device follows the sequence settings to disable output rails. The fault event log remains stored in the corresponding registers and can be accessed by the ECU after the reset.
- If register bit 0x0D[3] = 1, all registers, except for the sequence control related register at 0x02[4:0] are reset to their default values. The device follows the sequence settings to disable output rails.

18.8 **Protection Features**

The RTQ2078-QF is equipped with multiple protections to safeguard the device from damage caused by abnormal operations or fault conditions, including overload, short-circuit, soldering issues, and more.

18.8.1 Channel Output Undervoltage Protection (UVP)

There are four configurable UVP thresholds via the registers at 0x08. The output UVP deglitch time is adjustable through the registers at 0x09[3:0]. When any of the bits at 0x0F[4:1] is configured to 1, the device disables all channels simultaneously and enters a Fail-safe State once an UV fault is detected on any channel. Conversely, if all bits at 0x0F[4:1] are configured to 0 when an UV fault is detected, the device does not disable any channels but enters an Alarm State instead. The registers at 0x13[4:1] indicate that an UV fault event occurred on the corresponding channel, independent of the setting at 0x0F[4:1]. The RTQ2078-QF also includes OTP35 at registers 0xE3[1], providing one-time programmable settings of the channel output UVP behavior to be set as the factory default. Based on various states, there are different methods to reset the device, as shown in Table 3.

18.8.2 Channel Output Overvoltage Protection (OVP)

There are four configurable OVP thresholds via the registers at 0x0A. The output OVP deglitch time is adjustable through the registers at 0x0B[3:0]. When any of the bits at 0x10[4:1] is configured to 1, the device disables all channels simultaneously and enters a Fail-safe State once an OV fault is detected on any channel. Conversely, if all bits at 0x10[4:1] are configured to 0 when an OV fault is detected, the device does not disable any channels but enters an Alarm State instead. The registers at 0x14[4:1] indicate that the OV fault event occurred on the

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

corresponding channel, independent of the setting at 0x10[4:1]. The RTQ2078-QF also includes OTP35 at registers 0xE3[2], providing one-time programmable settings of the channel output OVP behavior to be set as the factory default. Based on various states, there are different methods to reset the device, as shown in Table 3.

18.8.3 Channel Overcurrent Protection (OCP)

This section describes overcurrent protection function of HVBuck1, LVBuck2, and LVBuck3 and LDO.

18.8.3.1 HVBuck1, LVBuck2, and LVBuck3

The step-down converter includes a cycle-by-cycle peak current-limit protection for the high-side MOSFET, safeguarding against abnormal increases in inductor current, including those beyond the inductor's saturation current rating. In the event of an overcurrent, the controller immediately turns off the high-side MOSFET and turns on the low-side MOSFET to keep the inductor current within the peak current limit. After the inductor current decreases to below the valley current limit, the high-side MOSFET resumes switching. If an overcurrent fault is continuously detected for a duration longer than the deglitch time, the device disables all channels simultaneously and enters a Fail-safe State. There are different methods to reset the device, as shown in Table 3.

18.8.3.2 LDO

When the load reaches the current-limit threshold, the output current is regulated to maintain the current limit level. If an overcurrent fault persists beyond the deglitch time, the device simultaneously disables all channels and enters a Fail-safe State. There are different methods to reset the device, as shown in <u>Table 3</u>.

18.8.4 Channel Input Overvoltage Protection (OVP)

If the input voltage of step-down converters (LVBUCK2 and LVBUCK3), and LDO reaches the overvoltage protection threshold, the device disables all channels simultaneously and enters a Regulator Off State. The device then automatically restarts and powers back on once the input voltage falls below the overvoltage threshold minus the hysteresis value.

18.8.5 Built-In Self Test Protection

The RTQ2078-QF features a Built-in Self Test (BIST) to ensure design integrity and enhance reliability. It conducts internal circuit tests before starting the rail power-on procedure The device enters a Fail-safe State without activating the rails if the BIST fails, and the BIST_FAULT_EVT register at 0x11[6] is set to 1 to indicate a BIST failure.

18.8.6 OTP Register CRC (Cyclic Redundancy Check) Protection

When the supply voltage VIN exceeds the power-on reset level of 2.7V (typical), the device loads OTP data to reset all registers to default values, and the CRC controller begins to perform a CRC to verify the integrity of the OTP registers. The CRC controller calculates the checksum value of the OTP registers and compares this value against the stored checksum value in OTP40. If a checksum error is detected, the device remains in the Power Off State and sets the OTP_CRC_EVT register at 0x11[5] to 1 as an indication.

18.8.7 Device Configuration Register CRC Protection

When the ECU changes registers to apply new settings, the CRC controller executes a CRC check to validate the integrity of the affected registers. If a checksum mismatch occurs, the device remains the current settings without reconfiguration. The CRC controller uses the standard CRC-8 polynomial, $X^8 + X^2 + X + 1$, to calculate the checksum, and it evaluates the CRC across an 8-bit string.

Table 5. Protection List

Channel	Туре	Threshold (Typ.)	Deglitch Time (Typ.)	Channels Behavior	Reset and Threshold (Typ.)
Dana	BIST	NA	NA	All channels stay disabled	Refer to <u>Table 3</u> . (Fail-safe State)
Base	OTP CRC	NA	NA	All channels stay disabled	V _{IN} ≤ 2.5V or EN = L
	UVLO	$V_{IN} \le 3.3V$ (after IC operation)	32μs	Disable all channels	VIN ≥ 3.8V
	OVP	VIN ≥ 25.5V	5μs	Disable all channels	V _{IN} ≤ 19.5V, Auto-recovery
System	TSD	T _J ≥ 170°C	5μs	Disable all channels	T _J ≤ 150°C, Auto-recovery
	I ² C CRC	NA	NA	Keep all channels in operation	NA
	UVP	Vout_hv1 ≤	50	If 0x0F[4] = 0, keep all channels in operation	If $0x0F[4] = 0$, refer to <u>Table</u> <u>3</u> . (Alarm State)
	UVP	Vout_HV1 x 80%	50μs	If 0x0F[4] = 1, disable all channels and latch-off	If 0x0F[4] = 1, refer to <u>Table</u> <u>3</u> . (Fail-safe State)
CH1 HVBuck1	OVE	Vout hv1≥	50.	If 0x10[4] = 0, keep all channels in operation	If $0x10[4] = 0$, refer to Table 3. (Alarm State)
TVBuckT	OVP	Vout_Hv1 x 110%	50μs	If 0x10[4] = 1, disable all channels and latch-off	If 0x10[4] = 1, refer to <u>Table</u> 3. (Fail-safe State)
	OCP	IL1_peak ≥ 2.5A	1ms	Cycle-by-cycle detection If keeps for 1ms, disable all channels and latch-off	Refer to <u>Table 3</u> . (Fail-safe State)
	UVP	Vout_lv2 ≤	F0o	If 0x0F[3] = 0, keep all channels in operation	If 0x0F[3] = 0, refer to <u>Table</u> 3. (Alarm State)
	UVP	VOUT_LV2 x 95%	50μs	If 0x0F[3] = 1, disable all channels and latch-off	If 0x0F[3] = 1, refer to <u>Table</u> <u>3</u> . (Fail-safe State)
CH2 LVBuck2	OVP	Vout_lv2 ≥	F0o	If 0x10[3] = 0, keep all channels in operation	If $0x10[3] = 0$, refer to <u>Table</u> 3. (Alarm State)
LVDUCKZ	OVP	Vout_Lv2 x 105%	50μs	If 0x10[3] = 1, disable all channels and latch-off	If 0x10[3] = 1, refer to <u>Table</u> 3. (Fail-safe State)
	OCP	IL2_peak ≥ 2.5A	1ms	Cycle-by-cycle detection If keeps for 1ms, disable all channels and latch-off	Refer to <u>Table 3</u> . (Fail-safe State)

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

Channel	Туре	Threshold (Typ.)	Deglitch Time (Typ.)	Channels Behavior	Reset and Threshold (Typ.)
	Input OVP	VIN_LV2 ≥ 5.8V	5μs	Disable all channels	V _{IN_LV2} ≤ 5.22V, Auto- recovery
	UVP	Vout_lv3 ≤	50μs	If 0x0F[2] = 0, keep all channels in operation	If $0x0F[2] = 0$, refer to <u>Table</u> 3. (Alarm State)
	OVF	Vout_lv3 x 95%	3 0μ s	If 0x0F[2] = 1, disable all channels and latch-off	If 0x0F[2] = 1, refer to <u>Table</u> <u>3</u> . (Fail-safe State)
CH3	OVP	Vout_lv3 ≥	50us	If 0x10[2] = 0, keep all channels in operation	If 0x10[2] = 0, refer to <u>Table</u> 3. (Alarm State)
LVBuck3		VOUT_LV3 x 105%	50μs	If 0x10[2] = 1, disable all channels and latch-off	If 0x10[2] = 1, refer to <u>Table</u> 3. (Fail-safe State)
	OCP	IL3_peak ≥ 2.5A	1ms	Cycle-by-cycle detection If keeps for 1ms, disable all channels and latch-off	Refer to <u>Table 3</u> . (Fail-safe State)
	Input OVP	V _{IN_LV3} ≥ 5.8V	5μs	Disable all channels	V _{IN_LV3} ≤ 5.22V, Auto-recovery
	UVP	Vout ldo≤	50	If 0x0F[1] = 0, keep all channels in operation	If 0x0F[1] = 0, refer to <u>Table</u> <u>3</u> . (Alarm State)
	OVP	Vout_ldo x 95%	50μs	If 0x0F[1] = 1, disable all channels and latch-off	If 0x0F[1] = 1, refer to <u>Table</u> <u>3</u> . (Fail-safe State)
CH4 LDO	OVD	Vout ldo ≥	50	If 0x10[1] = 0, keep all channels in operation	If 0x10[1] = 0, refer to <u>Table</u> 3. (Alarm State)
	OVP	Vout_LDO x 105%	50μs	If 0x10[1] = 1, disable all channels and latch-off	If 0x10[1] = 1, refer to <u>Table</u> <u>3</u> . (Fail-safe State)
	OCP	IOUT_LDO ≥ 450mA	1ms	Disable all channels and latch-off	Refer to <u>Table 3</u> . (Fail-safe State)

Channel	Туре	PGOOD	Event		
Base	BIST	L	BIST_FAULT_EVT (0x11[6] = 1)		
	OTP CRC	L	OTP_CRC_EVT (0x11[5] = 1)		
System	UVLO	L	NA		
	OVP	L VIN_OV_EVT (0x11[2] = 1)			
	TSD	L	TSD_EVT (0x11[3] = 1)		
	I ² C CRC	L	NA		
CH1 HVBuck1	UVP	L	HVBUCK1_UV_EVT (0x13[4] = 1)		
	OVP	L	HVBUCK1_OV_EVT (0x14[4] = 1)		
	OCP	L	HVBUCK1_OC_EVT (0x15[4] = 1)		
CH2 LVBuck2	UVP	L	LVBUCK2_UV_EVT (0x13[3] = 1)		
	OVP	L	LVBUCK2_OV_EVT (0x14[3] = 1)		
	OCP	L	LVBUCK2_OC_EVT (0x15[3] = 1)		
	Input OVP	L	PVD23_OV_EVT (0x11[1] = 1)		
CH3 LVBuck3	UVP	L	LVBUCK3_UV_EVT (0x13[2] = 1)		
	OVP	L	LVBUCK3_OV_EVT (0x14[2] = 1)		
	OCP	L	LVBUCK3_OC_EVT (0x15[2] = 1)		
	Input OVP	L	PVD23_OV_EVT (0x11[1] = 1)		
CH4 LDO	UVP	L	LDO_UV_EVT (0x13[1] = 1)		
	OVP	L	LDO_OV_EVT (0x14[1] = 1)		
	OCP	L	LDO_OC_EVT (0x15[1] = 1)		

Table 6. Fault Status and Event Log

18.9 Inductor Selection

18.9.1 HVBuck1, LVBuck2, and LVBuck3

Based on the following equations, the maximum inductor current for various load conditions can be determined. It is recommended that the inductor's saturation current rating exceed the calculated maximum current. To achieve optimal performance and efficiency, an inductor with a low Direct Current Resistance (DCR) should be chosen. The recommended nominal inductance is $1.5\mu H$ for HVBuck1 and $1\mu H$ for LVBuck2/LVBuck3.

$$\Delta I_{L} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{V_{IN} \times f_{SW} \times L}$$

$$I_{L_peak} = I_{OUT} + \frac{1}{2} \times \Delta I_{L}$$

18.10 Input and Output Capacitor Selection

18.10.1 HVBuck1, LVBuck2, and LVBuck3

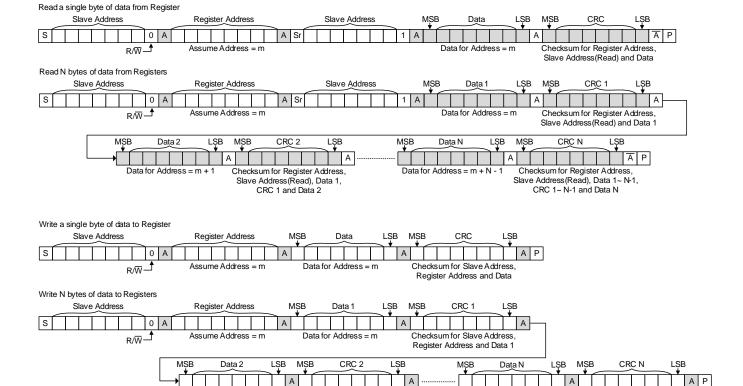
It is recommended to use at least a $4.7\mu F$ input capacitor with a $10\mu F$ output capacitor for step-down converters. The ripple voltage is an important parameter when choosing output capacitor. This portion consists of two parts. One is the product of the ripple current and the ESR of the output capacitor; the other is generated by the charging and discharging cycles of the output capacitor. The output ripple voltage can be calculated using the following formula:

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

$$\Delta V_{\text{OUTRipple}} = \Delta V_{\text{ESR}} + \Delta V_{\text{OUT}} = \Delta V_{\text{ESR}} + \frac{\Delta I_{\text{L}}}{8 \times C_{\text{OUT}} \times f_{\text{SW}}}$$

where $\Delta V_{ESR} = I_{Crms} \times R_{CESR}$

18.10.2 LDO


Proper selection of external capacitors is crucial for stability and performance of any LDO. A $2.2\mu F$ capacitor is generally suitable for both input and output of the LDO. Additional capacitors in parallel on the output can enhance noise suppression, it may also result in increased inrush current during the LDO's power-up sequence. This potential trade-off should be carefully evaluated.

18.11 I²C Interface

18.11.1 Slave Address

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 = LSB
1	1	1	0	1	0	1	R/W

18.11.2 Read and Write Function

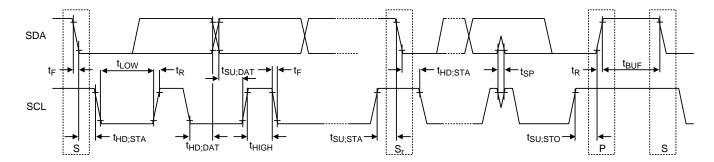
Checksum for Slave Address

Register Address, Data 1, CRC 1

DSQ2078-QF-00

Data for Address = m + N - 1

Driven by Master, Driven by Slave, P Stop, S Start, Sr Repeat Start


Data for Address = m + 1

Checksum for Slave Address

Register Address, Data 1~ N-1, CRC 1~ N-1 and Data N

18.11.3 I²C Waveform Information

18.12 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_J(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

$$PD(MAX) = (TJ(MAX) - TA) / \theta JA$$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125° C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For WET-UQFN-16L 3x3 (FC) package, the thermal resistance, θ_{JA} , is 54.87° C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at $T_A = 25^{\circ}$ C can be calculated by the following formula:

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C) / (54.87^{\circ}C/W) = 1.82W$ for a WET-UQFN-16L 3x3 (FC) package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curve in <u>Figure 6</u> allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

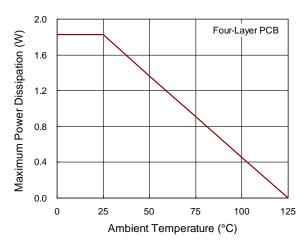


Figure 6. Derating Curve of Maximum Power Dissipation

RICHTEK is a registered trademark of Richtek Technology Corporation.

RTQ2078-QF

18.13 Layout Considerations

The PCB layout is an important factor in maintaining the high performance of the RTQ2078-QF. Special attention must be given to the high current paths and fast-switching nodes in the PCB layout to ensure the robustness of the RTQ2078-QF. An improper layout can result in issues such as poor line or load regulation, shifts in ground and output voltage, stability problems, unsatisfactory EMI performance, or reduced efficiency. To optimize the performance of the RTQ2078-QF, the following PCB layout guidelines must be strictly followed:

- The trace from the switching node to the inductor should be kept as short as possible to minimize the switching loop, which will help to improve EMI characteristics.
- Place the input and output capacitors as close as possible to their respective pins to ensure effective filtering.
- Keep the main power traces as wide and short as possible.
- Connect the AGND and PGND to a solid ground plane to enhance thermal dissipation and provide noise immunity.
- Directly connect the step-sown converter's output capacitor to the feedback network to avoid voltage deviations caused by parasitic resistance and inductance in the PCB traces.

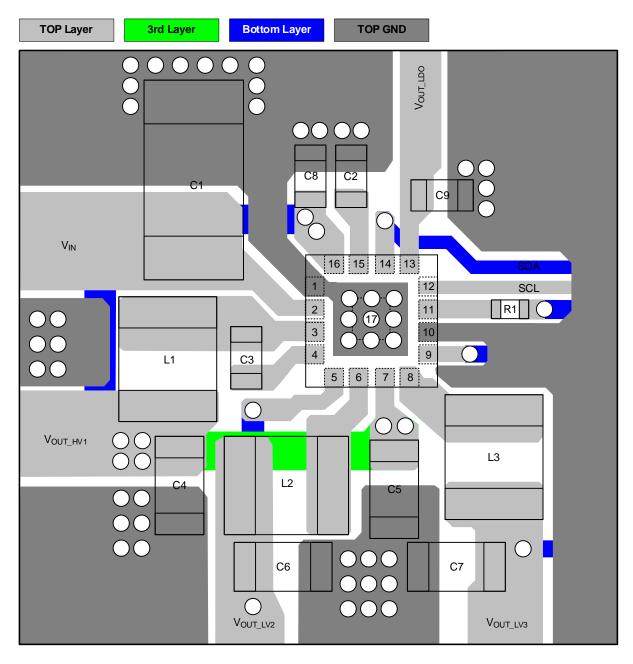


Figure 7. PCB Layout Guide

Note 8. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

19 Functional Register Description

R: Read Only

R/W: Read and Write

W1C: Write Clear (Write "1" then automatic clears to "0" after procedure finish)

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TOP		Meaning	Reserved	Reserved	Reserved	UV	LO	UVLO_ DEG	REBOOT _ACT	SEQ_ CTRL
CFG	0x00	Default	0	0	0	0	0	0	0	1
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			VIN UVLO) (Falling/R	tising) volta	ge settir	ng			
ч	UVLO (CFG_LO	CK)	00: 3.3V/3 01: 3.8V/4 10: 4.3V/5 11: 6.8V/7	5.0V	ult)					
	UVLO DE	-G	UVLO fall	ing deglitch	n time settin	g				
	(CFG_LO		0: 32μs ([1: 64μs	Default)						
	REBOOT_	л <i>с</i> т	IC auto-re	eboot behav	vior selection	n when	the PM	IC enters a	Fail-safe St	tate
	(CFG_LO				abled (Defa ıbled (Regis	•	p)			
			Sequence	ON and C	FF control					
	SEQ_CTI	RL	0: Sequer 1: Sequer	nce OFF nce ON (De	efault)					

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CH		Meaning	PGOO	D_DLY	BUCK_ MODE	HVBUCK 1_DIS	LVBUCK 2_DIS	LVBUCK 3_DIS	LDO_ DIS	Reserved
CFG	0x01	Default	0	1	1	0	0	0	0	0
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	PGOOD_I	DLY				npletion of t Power-Go		ırt process	for the la	st channel
	(CFG_LO	CK)								
	OLICK MC	אחר	LVBuck2	and LVBu	ck3 opera	tion mode				
	BUCK_MC (CFG_LO		0: PSM 1: FPWM	l (Default)						
_	IVBUCK1	פוח	HVBuck1	active ou	tput discha	arge				
	(CFG_LO		0: Enable 1: Disable	e (Default) e						
	VBUCK2	DIS	LVBuck2	active out	put discha	rge				
	(CFG_LO		0: Enable 1: Disable	e (Default) e						
	VBI ICK3	DIS	LVBuck3	active out	put discha	rge				
	_	LVBuck3 active output discharge 0: Enable (Default) 1: Disable								
	LDO DI		LDO activ	ve output o	discharge					
I	(CFG_LO		0: Enable 1: Disable	e (Default) e						

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SEQ		Meaning	Reserved	ON	_Td	OFF	_Td	Reserved	POWER_	ON_SEQ
ON_	0x02	Default	0	0	0	1	0	0	0	1
CFG		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	ON_Td (CFG_LO		Delay time 00: 0ms (I 01: 0.5ms 10: 1ms 11: 2ms	Default)	n power-o	on channe	l and its r	next channe	el	
	OFF_To		Delay time 00: 1ms 01: 1.5ms 10: 2ms (I 11: 3ms		n power-o	ff channe	l and its r	next channe	ıl	
	WER_ON (CFG_LO		Power-ON 00: SEQ0 01: SEQ1 10: SEQ2 11: SEQ3	(Default)		s				

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
HVBUC		Meaning	Reserved	Reserved	Reserved	Reserved		HVBUCK	1_VOUT	
K1_OU	0x03	Default	0	0	0	0	1	0	0	1
T_CFG		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			HVBuck1	output voltag	ge can be se	t from 2.7V t	o 4V (10	0mV/step), 4.5V, a	nd 5.0V
	/BUCK1_\ (CFG_LO		0000: 2.7\\ 0001: 2.8\\ 0010: 2.9\\ 0011: 3.0\\ 0100: 3.1\\ 0101: 3.2\\ 0110: 3.3\\ 1000: 3.5\\ 1001: 3.6\\ 1010: 3.7\\ 1011: 3.8\\ 1100: 3.9\\ 1111: 5.0\\	/ / / / / (Default)						

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVBUC		Meaning	Reserved	Reserved	Reserved		LVB	UCK2_V	DUT	
K2_OU	0x04	Default	0	0	0	0	1	0	1	0
T_CFG		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	/BUCK2_\ (CFG_LO		1.9V (100) 00000: 0.6 00001: 0.7 00011: 0.7 00100: 0.8 00101: 0.8 00110: 0.9 00111: 0.9 01000: 1.0 01001: 1.0	mV/step) 50V 55V 70V 55V 50V 55V 50V 55V 60V 55V 60V 50V 5	ge can be s	et from 0	.6V to 1.4	4V (50mV	/step) and	I 1.4V to

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LVBUC		Meaning	Reserved	Reserved	Reserved		LVB	UCK3_V	DUT	
K3_OU	0x05	Default	0	0	0	1	0	1	0	0
T_CFG		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
LV	/BUCK3_\ (CFG_LO	/OUT		output volta mV/step) 60V 65V 70V 75V 80V 85V 90V 95V 90V 95V 90V 95V 90V 95V	R/W ge can be s					
			10001: 1.5 10010: 1.6 10011: 1.7	50V 50V 50V 50V (Default 50V 50V 50V 50V 50V 50V 50V 50V	t)					

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
LDO O		Meaning	Reserved	Reserved	Reserved		L	DO_VOU	T	
UT_	0x06	Default	0	1	1	1	0	0	1	1
CFG		Read/Write	R/W	R	R	R/W	R/W	R/W	R/W	R/W
			LDO output (50mV/ste	•	n be set fro	m 1.8V to	1.9V (50	mV/step)	and 2.5\	' to 3.5V
	LDO_VOI (CFG_LOI		00000: 1.8 00001: 1.8 00010: 1.8 00010: 2.8 00101: 2.6 00110: 2.6 00111: 2.7 01000: 2.7 01001: 2.8 01011: 2.8 01101: 3.0 01110: 3.0 01111: 3.1 10000: 3.1 10001: 3.2 10011: 3.3 10101: 3.4 10111: 3.4	85V 80V 55V 60V 55V 80V 85V 80V 55V 80V 55V 80V 85V 80V 85V 80V 85V 80V 85V 80V 85V 80V 85V						

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
СН		Meaning	HVBUC	K1_UV	LVBUC	K2_UV	LVBUC	K3_UV	LDC	_UV
UVP1_	0x08	Default	1	1	0	1	0	1	0	1
CFG		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			HVBuck1	UV detec	tion thresh	old with re	espect to the	ne target v	oltage	
	HVBUCK1 (CFG_LO	_	00: 95% 01: 90% 10: 85% 11: 80%	(Default)						
			LVBuck2	UV detect	tion thresh	old with re	spect to th	e target v	oltage	
	VBUCK2 (CFG_LO	-	00: 96.5% 01: 95% 10: 94% 11: 90%							
			LVBuck3	UV detect	tion thresh	old with re	spect to th	e target v	oltage	
	VBUCK3 (CFG_LO	_	00: 96.5% 01: 95% 10: 94% 11: 90%							
	LDO UV detection threshold with respect to the target voltage									
	LDO_U\ CFG_LO(00: 96.5% 01: 95% 10: 94% 11: 90%							

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CH_		Meaning	Reserved	Reserved	Reserved	Reserved		CK1_UV_ EG	LVCH_L	IV_DEG
UVP2_ CFG	0x09	Default	0	0	0	1	0	1	0	1
010		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			HVBuck1	JV detectio	n deglitch t	ime selectio	n			
	BUCK1_U\ (CFG_LO	_	00: Reserv 01: 50μs (l 10: 75μs 11: 100μs							
			LVBuck2, l	LVBuck3, a	nd LDO UV	detection of	deglitch	time selec	tion	
	VCH_UV_ (CFG_LO		00: Reserv 01: 50μs (l 10: 75μs 11: 100μs							

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
СН		Meaning	HVBUC	K1_OV	LVBUC	K2_OV	LVBUC	K3_OV	LDC	_OV
OVP1_	0x0A	Default	0	1	0	1	0	1	0	1
CFG		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			HVBuck1	OV detec	tion thresh	nold with re	espect to the	he target v	oltage	
	IVBUCK1 (CFG_LO	_	00: 105% 01: 110% 10: 115% 11: 120%	(Default)						
			LVBuck2	OV detec	tion thresh	old with re	spect to th	ne target v	oltage	
	VBUCK2_ (CFG_LO	_	00: 103.5 01: 105% 10: 106% 11: 110%	(Default)						
			LVBuck3	OV detec	tion thresh	old with re	spect to th	ne target v	oltage	
	VBUCK3_ (CFG_LO	_	00: 103.5 01: 105% 10: 106% 11: 110%	(Default)						
			LDO OV	detection	threshold v	with respec	ct to the ta	rget voltag	je	
	LDO_O\ CFG_LO(00: 103.5 01: 105% 10: 106% 11: 110%	(Default)						

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CH_		Meaning	Reserved	Reserved	Reserved	Reserved		K1_OV_ EG	LVCH_C	V_DEG
OVP2_ CFG	0x0B	Default	0	0	0	1	0	1	0	1
0.0		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			HVBuck1	OV detection	n deglitch t	ime selection	on			
	BUCK1_Oʻ (CFG_LO	_	00: Reserv 01: 50μs (10: 75μs 11: 100μs							
			LVBuck2,	LVBuck3, a	nd LDO OV	detection of	deglitch	time seled	ction	
	VCH_OV_ (CFG_LO		00: Reserv 01: 50μs (10: 75μs 11: 100μs							

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FUNC1		Meaning	Reserved	Reserved	Reserved	RESET	RESET_ ACT	FAULT_ MASK	PHASE_ EN	SSP_EN
_CFG	0x0D	Default	0	0	0	0	0	0	1	1
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			SW reset	and reset b	ehavior fol	lows 0x0E)[3], RESE	T_ACT		
	RESET	-	0: None (I 1: SW Re	,						
			RESET triggered registers behavior selection							
	RESET_A (CFG_LO		registers	(default)	s to defau to default v		with the	exception	of the fa	ult event
	-ALU T NA	N C IX	All faults	event mask						
	FAULT_MA (CFG_LO		0: Unmas 1: Mask	k (Default)						
	PHASE I	=NI	Bucks' sw	ritching pha	se shift fun	ction				
ı	(CFG_LO		0: Disable 1: Enable							
	SSP EI		Bucks' sw	itching fred	uency spre	ad spectr	um functio	on		
	(CFG_LO		0: Disable 1: Enable							

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PROTE C1	0x0F	Meaning	Reserved	Reserved	Reserved	HVBUC K1_UV_ SD	LVBUCK 2_UV_ SD	LVBUCK 3_UV_ SD	LDO_ UV_SD	Reserved
CFG	OXOI	Default	0	0	0	0	0	0	0	0
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
ш	HVBuck1 undervoltage protection behavior selection									
	(CFG_LO	_	0: Only inform ECU of fault events (Default) 1: Channel latch-off and inform ECU of fault events							
137	BLICKS LI	V CD	LVBuck2	undervolta	ge protectio	n behavio	r selection	1		
	BUCK2_U (CFG_LO		•		of fault ever and inform I	,	,			
1.7/	BIICK3 II	V SD	LVBuck3	undervolta	ge protectio	n behavio	r selectior	า		
LVBUCK3_UV_SD (CFG_LOCK) 0: Only inform ECU of fault events (Default) 1: Channel latch-off and inform ECU of fault events										
	LDO UV	en.	LDO unde	ervoltage p	rotection be	havior se	lection			
	(CFG_LO	•			of fault ever and inform	•	,			

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
PROTE C2_	0x10	Meaning	Reserved	Reserved	Reserved		LVBUCK 2_OV_ SD	LVBUCK 3_OV_ SD	LDO_ OV_SD	Reserved			
CFG	OXIO	Default	0	0	0	1	1	1	1	1			
		Read/Write	R/W	R/W R/W R/W R/W R/W R/W R/W									
ш	BLICK1 C	W SD	HVBuck1	HVBuck1 overvoltage protection behavior selection									
	HVBUCK1_OV_SD (CFG_LOCK) 0: Only inform ECU of fault events 1: Channel latch-off and inform ECU of fault events (Default)												
11//	DIICKA O	V SD	LVBuck2	overvoltage	e protection	behavior	selection						
	BUCK2_O (CFG_LO				of fault ever and inform		ult events	(Default)					
11//	DIICKA O	V SD	LVBuck3	overvoltage	e protection	behavior	selection						
LVBUCK3_OV_SD (CFG_LOCK) 0: Only inform ECU of fault events 1: Channel latch-off and inform ECU of fault events (Default)													
	DO 01/	en.	LDO over	voltage pro	tection beh	avior sele	ction						
	LDO_OV_ (CFG_LO	•			of fault ever and inform		ult events	(Default)					

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BASE1	0x11	Meaning	Reserved	BIST_ FAULT_ EVT	OTP_ CRC_ EVT	Reserved	TSD_ EVT	VIN_OV _EVT	PVD23_ OV_EVT	Reserved
_EVT	OAT.	Default	0	0	0	0	0	0	0	0
		Read/Write	R/W	W1C	W1C	W1C	W1C	W1C	W1C	W1C
		BIST fault acknowledgement								
BIS	ST_FAULT	_EVT	No fault are detected, or faults are masked (Default) Fault is detected							
			Internal OTP CRC checking fault acknowledgement							
0	TP_CRC_	EVT	0: No faul 1: Fault is		ected, or fa	aults are ma	asked (De	efault)		
			Thermal s	hutdown e	event ackr	owledgeme	ent			
	TSD_EV	T	0: No faul 1: Fault is		ected, or fa	aults are ma	asked (De	efault)		
			VIN overv	oltage thre	eshold eve	ent acknowl	edgemen	t		
\	/IN_OV_E	EVT	0: No faul 1: Fault is		ected, or fa	aults are ma	asked (De	efault)		
			PVD23 ov	vervoltage	threshold	event ackn	owledger	nent		
P\	/D23_OV_	_EVT	0: No faul 1: Fault is		ected, or fa	aults are ma	asked (De	efault)		

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CH_UV	0x13	Meaning	Reserved	Reserved	Reserved	HVBUC K1_UV_ EVT	LVBUCK 2_UV_ EVT	LVBUCK 3_UV_ EVT	_	Reserved
_EVT	0.710	Default	0	0	0	0	0	0	0	0
		Read/Write	R/W	R/W	R/W	W1C	W1C	W1C	W1C	W1C
	HVBuck1 undervoltage fault event									
HVE	BUCK1_U	V_EVT	0: No faults are detected, or faults are masked (Default) 1: Fault is detected							
			LVBuck2	undervolta	ge fault eve	ent				
LVE	BUCK2_U\	V_EVT		ts are dete	cted, or fau	lts are ma	sked (Def	ault)		
			LVBuck3	undervolta	ge fault eve	ent				
LVE	LVBUCK3_UV_EVT 0: No faults are detected, or faults are masked (Default) 1: Fault ever is detected									
			LDO unde	ervoltage fa	ult event					
L	.DO_UV_i	EVT		ts are dete ver is detec	cted, or fau cted	lts are ma	sked (Def	ault)		

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CH_OV	0x14	Meaning	Reserved	Reserved	Reserved	HVBUC K1_OV_ EVT	LVBUCK 2_OV_ EVT	LVBUCK 3_OV_ EVT	_	Reserved
_EVT	OX 1	Default	0	0	0	0	0	0	0	0
		Read/Write	R/W	R/W	R/W	W1C	W1C	W1C	W1C	W1C
		HVBuck1 overvoltage fault event								
HVE	BUCK1_O	V_EVT	No faults are detected, or faults are masked (Default) Fault is detected							
			LVBuck2 c	vervoltage	fault even	t				
LVE	BUCK2_O	V_EVT	0: No fault 1: Fault is	s are detec detected	cted, or fau	lts are ma	sked (Def	ault)		
			LVBuck3 c	vervoltage	fault even	t				
LVE	BUCK3_O	V_EVT	0: No fault 1: Fault is		cted, or fau	lts are ma	sked (Def	ault)		
	LDO overvoltage fault event									
L	.DO_OV_I	EVT	0: No fault 1: Fault is	s are deted detected	cted, or fau	lts are ma	sked (Def	ault)		

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
CH_OC	0x15	Meaning	Reserved	Reserved	Reserved		LVBUCK 2_OC_ EVT	LVBUCK 3_OC_ EVT	_	Reserved			
_EVT	OXIO	Default	0	0	0	0	0	0	0	0			
		Read/Write	R/W	R/W	R/W	W1C	W1C	W1C	W1C	W1C			
			HVBuck1	HVBuck1 overcurrent fault event									
HVE	BUCK1_O	C_EVT	cted, or fau	ults are ma	asked (De	fault)							
			LVBuck2 overcurrent fault event										
LVE	BUCK2_OC	C_EVT	0: No faul 1: Fault is	ts are dete	cted, or fau	ults are ma	asked (De	fault)					
			LVBuck3	overcurren	t fault even	nt							
LVBUCK3_OC_EVT 0: No faults are detected, or faults are masked (Default) 1: Fault is detected													
			LDO over	current fau	lt event								
L	.DO_OC_E	EVT	0: No faul 1: Fault is	ts are dete	cted, or fau	ults are ma	asked (De	fault)					

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Meaning	Reserved	Reserved	Reserved	Reserved	Reserved	DI	EV_STAT	Ε
DEV_ STAT	0x16	Default	0	0	0	0	0	0	0	0
01711		Read/Write	R	R	R	R	R	R	R	R
			Indicates	the PMIC p	resent stat	е				
	DEV_STA	TE	001: Stan 010: Pow 011: Activ 100: Alarr	dby State er-On State e State n State Safe State erved		ST State (D	efault)			

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ОТР		Meaning	CRC_ START	CRC_ FAIL	CRC_ DONE	CRC_ EN	Reserved	Reserved	Reserved	Reserved
CRC_1	0x18	Default	0	0	0	1	0	0	0	0
		Read/Write	R/W	R	R	R/W	R/W	R/W	R/W	R/W
			For OTF	CRC va	lue calcul	ation, the	calculated	value is dis	played at 0	x19
	CRC_STA	ART .	0: None 1: Enabl	(Default) e						
			OTP CR	C compa	rison resu	ult				
	CRC_FA	IL	0: None 1: CRC		oass (Def	ault)				
			OTP CR	C calcula	ation proc	ess				
	CRC_DO	NE		or calculation cor	ating (Def npleted	ault)				
			OTP CR	C functio	n					
	CRC_E	N	0: Disab 1: Enabl	le e (Defaul	t)					

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Meaning				OTP_0	CRC_RESU	JLT		
OTP_ CRC_2	0x19	Default	0	0	0	0	0	0	0	0
0.10_2		Read/Write R R R R R R								
OTP_CRC_RESULT OTP CRC calculation value										

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM_		Meaning				TM_F	ASS_COD	E1		
PASS_	0x20	Default	0	0	0	0	0	0	0	0
CODE1		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
TM	PASS_C	ODE1					n69 and 0x2 n69 or 0x21		sequentially	

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TM		Meaning				TM_P	ASS_COD	E2		
PASS_	0x21	Default	0	0	0	0	0	0	0	0
CODE2		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
TM	I_PASS_C	ODE2					n69 and 0x2 n69 or 0x21		sequentially	

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Meaning	UV_L	VCH	OV_L	VCH	UV_DE	G_LVCH	OV_DE	G_LVCH
OTP34	0XE2	Default	0	1	0	1	0	1	0	1
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
			LVBuck2, voltage	LVBuck3,	and LDO	UV detec	ction thres	shold with	respect	to target
(Not ir	UV_LVC RTK P/N		00: 96.5% 01: 95% (10: 94% 11: 90%							
			LVBuck2, voltage	LVBuck3,	and LDO	OV detec	ction thres	shold with	respect	to target
(Not ir	OV_LVC RTK P/N		00: 103.5° 01: 105% 10: 106% 11: 110%							
			LVBuck2,	LVBuck3, a	and LDO U	V detectio	n deglitch	time selec	ction	
	V_DEG_L RTK P/N		00: Reser 01: 50μs (10: 75μs 11: 100μs	Default)						
LVBuck2, LVBuck3, and LDO OV detection deglitch time selection										
	V_DEG_L RTK P/N		00: Reser 01: 50μs (10: 75μs 11: 100μs	Default)						

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
		Meaning	OV_F	IVCH	UV	UVLO		CH_OV_ SD	CH_UV_ SD	REBOOT	
OTP35	0XE3	Meaning OV_HVCH Default 0	1	0	0	0	1	0	0		
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
			HVBuck1	OV detec	tion thresh	old with re	espect to t	the target v	voltage		
(Not ir	OV_HVC n RTK P/N		01: 110% 10: 115%	(Default)							
			VIN UVLO (Falling/Rising) voltage setting								
	UVLO		01: 3.8V/4 10: 4.3V/5	4.5V 5.0V	ult)						
	UVLO DI		UVLO fal	ling deglito	h time set	ting					
(Not ir	_			Default)							
	CH_OV_	SD		, LVBuck	2, LVBuc	k3, and	LDO ove	ervoltage	protection	behavior	
(Not in	n RTK P/N	Options)	Only inform ECU of fault events Channel latch-off and inform ECU of fault events (Default)								
		20		, LVBuck	2, LVBuck	3, and L	DO und	ervoltage	protection	behavior	
0: Only inform ECU of fault events (Default) 1: Channel latch-off and inform ECU of fault events											
	DEBOO	т	IC auto-reboot behavior selection when the PMIC enters a Fail-safe State								
(Not in	REBOOT (Not in RTK P/N Op						o)				

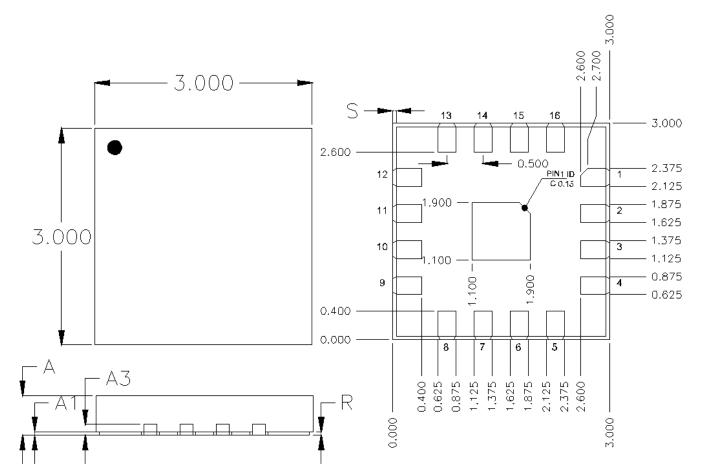
Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		Meaning	SEQ_ CTRL	ON	_Td	OFF.	_Td	Reserved	POWER_	ON_SEQ		
OTP36	0XE4	Default	1	0	0	1	0	1				
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W R/W	R/W		
	SEO CT	OI.	Sequence	ON and C	FF control							
SEQ_CTRL (Not in RTK P/N Options) 0: Sequence OFF 1: Sequence ON (Default)												
				Delay time between power-on channel and its next channel								
	ON_Td		00: 0ms (Default) 01: 0.5ms 10: 1ms 11: 2ms									
			Delay time	e between	power-off c	hannel ar	nd its ne	xt channel				
	OFF_To	d	00: 1ms 01: 1.5ms 10: 2ms (11: 3ms									
				Power-ON sequence settings								
PO	WER_ON	_SEQ	00: SEQ0 01: SEQ1 10: SEQ2 11: SEQ3	(Default)								

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Meaning		HVBUCK	1_VOUT			LVBUCK	BUCK2_VOUT	
OTP37	0XE5	Default	1	0	0	1	0	1	0	0
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Н	/BUCK1_\	/OUT	0000: 2.7' 0001: 2.8' 0010: 2.9' 0011: 3.0' 0100: 3.1' 0101: 3.2' 0110: 3.3' 0111: 3.4\ 1000: 3.5'	V V V V V V V V (Default) V V	age can be	set from 2	.7V to 4V	(100mV/st	ep), 4.5V,	and 5.0V
LV	/BUCK2_\	/OUT	1.9V (100 0000: 0.99 0001: 0.99 0010: 1.09 0011: 1.09	mV/step) 0V 5V 0V 5V 0V (Default 5V 0V 5V 0V 5V 0V 5V 0V 0V 0V		e set from	0.9V to 1	.4V (50m\	//step) and	d 1.4V to

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Meaning		LVBUCK	3_VOUT			LDO_	VOUT	
OTP38	0XE6	Default	1	1	1	0	1	1	0	1
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
LV	/BUCK3_\	/OUT	1.9V (100 0000: 0.9 0001: 0.9 0010: 1.0 0010: 1.1 0100: 1.1 0110: 1.2 1000: 1.3 1001: 1.3 1011: 1.5 1100: 1.6 1101: 1.7	0V 5V 0V 5V 0V 5V 0V 5V 0V 0V 0V 0V 0V		e set from	0.9V to 1	.4V (50m\	//step) and	d 1.4V tc
	LDO_VO	UT	0000: 1.8 0001: 2.7 0010: 2.7 0011: 2.8 0100: 2.8 0101: 2.9 0110: 2.9 0111: 3.0 1000: 3.0 1001: 3.1 1010: 3.1 1011: 3.2 1100: 3.2	0V 5V 0V 5V 0V 5V 0V 5V 0V 5V 0V (Default		from 1.8V	and 2.7V	to 3.4V (5	0mV/step	

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

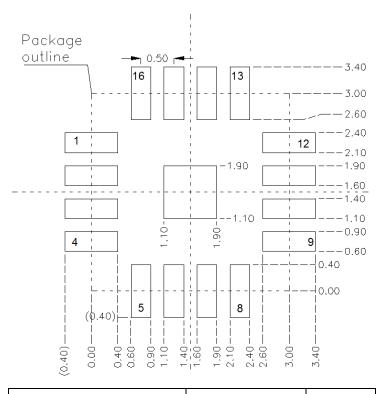
RTQ2078-QF



Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Meaning	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	ADR
OTP39	0XE7	Default	0	0	1	1	0	1	0	0
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				ve address	3					
(Not in	ADR n RTK P/N	Options)	0: 75h (7 1: 76h (7	bit) (Defaul bit)	fault)					

Address Name	Register Address	Description	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Meaning	CRC_B7	CRC_B6	CRC_B5	CRC_B4	CRC_B3	CRC_B2	CRC_B1	CRC_B0
OTP40	0XE8	Default	0	1	0	0	0	1	1	0
		Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
After modifying the settings of OTP34 to OTP40, write the register 0x18[This action triggers the PMIC to automatically calculate a new CRC wl shown in the register 0x19. Enter the new CRC value into OTP40 to complete PMIC BIST process successfully.							which is			

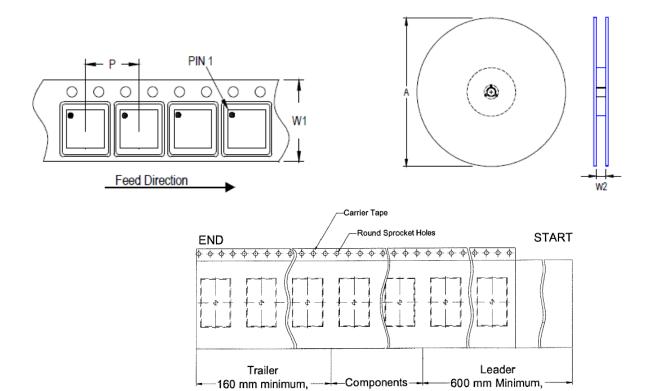
20 Outline Dimension


Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.500	0.600	0.020	0.024		
A1	0.000	0.050	0.000	0.002		
A3	0.100	0.200	0.004	0.008		
R	0.050	0.150	0.002	0.006		
S	0.001	0.090	0.000	0.004		

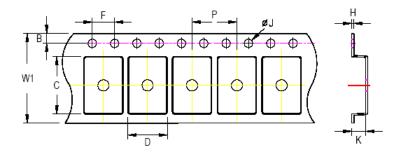
Tolerance ±0.050

WET U-Type 16L QFN 3x3 Package (FC)

21 Footprint Information


Package	Number of Pin	Tolerance
WET-UQFN3x3-16(FC)	16	±0.05 mm

DSQ2078-QF-00



22 Packing Information

22.1 **Tape and Reel Data**

Package Type	Tape Size (W1) (mm)	Pocket Pitch (P) (mm)	Reel Si	Reel Size (A) (mm) (in)		Trailer (mm)	Leader (mm)	Reel Width (W2) Min./Max. (mm)
QFN/DFN 3x3	8	4	180	7	3,000	160	600	8.4/9.9

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 8mm carrier tape: 0.5mm max.

Tape Size	W1	Р		В		F		۵٦		Н
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

22.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	3 reels per inner box Box A
2	HIC & Desiccant (1 Unit) inside	5	12 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	Container Reel			Вох		Carton			
Package	Package Size Units		Item	Reels	Units	Item	Boxes	Unit	
05110 05110 0	7"	0.000	Box A	3	9,000	Carton A	12	108,000	
QFN & DFN 3x3	7"	3,000	Box E	1	3,000	For Combined or Partial Reel		teel.	

22.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω /cm 2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DSQ2078-QF-00 May 2024 www.richtek.com

23 Datasheet Revision History

Version	Date	Description	Item
00	2024/5/24	Final	Applications on P1