







# **RT9758D**

# **High Voltage Cap Divider Converter with Bypass Function**

### 1 General Description

The RT9758D is a high efficiency switching capacitor converter for input >7.4V application. The efficiency is up to 98.1% when Vout = 10V, Iout = 2A, switching frequency = 500kHz, dual phase with VBUS input in cap divider mode. The device integrates two phase switching capacitor topology (DIV2 mode), bypass mode, an input reverse blocking MOS and 9-way protections. The default operation mode of the device is DIV2 mode. User can use I<sup>2</sup>C to select the device operating in bypass mode or reverse DIV2 mode or reverse bypass mode. The maximum output current is 6A with DIV2 mode or 5A with bypass mode. In present mode ( $\overline{EN}$  = H), the host can still issue commands by the I<sup>2</sup>C serial interface.

The recommended junction temperature range is  $-40^{\circ}$ C to 125°C, and the ambient temperature range is  $-40^{\circ}$ C to 85°C.

### 2 Applications

- Smart Phones
- Tablet
- PC

# 3 Ordering Information

RT9758D 🗖

-Package Type<sup>(1)</sup>

WSC: WL-CSP-36B 2.74x2.84 (BSC)

#### Note 1.

Marked with <sup>(1)</sup> indicated: Richtek products are Richtek Green Policy compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

# 4 Marking Information



3M: Product Code YMDAN: Date Code

### 5 Features

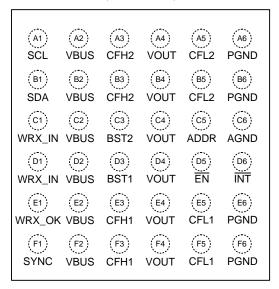
- Integrated Bidirectional Bypass Mode and Cap Divider Mode (DIV2 Mode)
- Input Reverse Blocking NFET between WRX\_IN Pin and VBUS Pin
  - Block the Reverse Current
- Dual-Phase Charge Pump Core
  - 6A Output Current Ability with DIV2 Mode and 5A with Bypass Mode
  - Efficiency Up to 98.1% when Vout = 10V, lout = 2A, Switching Frequency = 500kHz and Dual Phase with VBUS Input in DIV2 Mode
  - 300kHz to 1.5MHz Variable Switching Frequency Stay Out of Audio Band
  - Spread Spectrum Technology for EMI Reduction
  - Adjustable Single-Phase or Dual-Phase for DIV2 Mode
  - Programmable Pre-Charge Current and Pre-Charge Timing for Charge Soft-Start
  - Support Converter Soft-Start with 500mA Loading
- Support Synchronize Function for Parallel Application
- Operation Mode Transfer Automatically between Bypass Mode and DIV2 Mode (AT\_Function)
- I<sup>2</sup>C is Available when Device in Present Mode
- 3-Error Charge Pump Switch Protection
  - VBUS Voltage Too Low Error Protection before Switch (VBUS\_LOW\_ERR)
  - CFLY Short Error Protection Before Switch (CFLY\_DIAG)
  - Converter Overcurrent Protection (CON\_OCP)
- 6-Way System Protection
  - VBUS Overvoltage Protection (VBUS\_OVP)
  - IBUS Overcurrent Protection (IBUS OCP)
  - VOUT Overvoltage Protection (VOUT\_OVP)
  - WRX Reverse Overcurrent Protection (WRX\_IRE\_OCP)
  - VOUT Short Error Protection Before Charge (VOUT\_ERR)
  - Junction Over-Temperature Protection (TDIE\_OTP)

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK is a registered tr.

is a registered trademark of Richtek Technology Corporation.




## **Table of Contents**

| 1  | Gener  | al Description                   | 1  |    | 14.6    | Pre-Charge Mechanism                  | 2  |
|----|--------|----------------------------------|----|----|---------|---------------------------------------|----|
| 2  | Applic | cations                          | 1  |    | 14.7    | Operation Mode Diagram                | 28 |
| 3  | Order  | ing Information                  | 1  |    | 14.8    | WRX_OK Function (WRX_OK)              | 29 |
| 4  | Markii | ng Information                   | 1  |    | 14.9    | Q0 MOSFET Control (Q0_CONTROL)        | 29 |
| 5  | Featu  | res                              | 1  |    | 14.10   | I <sup>2</sup> C Serial Interface     | 29 |
| 6  | Pin Co | onfiguration                     | 3  |    | 14.11   | Interrupt (INT), STAT, FLAG, and MASK | 30 |
| 7  | Funct  | ional Pin Description            | 3  |    | 14.12   | Spread Spectrum                       | 30 |
| 8  | Typica | al Application Circuit           | 5  |    | 14.13   | Parallel Application                  | 3  |
| 9  | Funct  | ional Block Diagram              | 6  |    | 14.14   | Thermal Considerations                | 34 |
| 10 | Absol  | ute Maximum Ratings              | 7  |    | 14.15   | Layout Considerations                 | 34 |
| 11 | Recor  | nmended Operating Conditions     | 7  | 15 | Functi  | onal Register Description             | 30 |
| 12 | Electr | ical Characteristics             | 8  |    | 15.1    | Register Map Summary                  | 36 |
| 13 | Typica | al Operating Characteristics     | 17 |    | 15.2    | Register Description                  | 38 |
| 14 | Applic | cation Information               | 18 | 16 | Outline | e Dimension                           | 5  |
|    | 14.1   | Operation Principle              | 18 | 17 | Footpr  | rint Information                      | 50 |
|    | 14.2   | Device Power Up                  | 20 | 18 | Packin  | ng Information                        | 57 |
|    | 14.3   | Protection Feature               | 21 |    | 18.1    | Tape and Reel Data                    | 5  |
|    | 14.4   | Auto Transition Function Feature |    |    | 18.2    | Tape and Reel Packing                 | 58 |
|    |        | (AT_Function)                    | 25 |    | 18.3    | Packing Material Anti-ESD Property    | 59 |
|    | 14.5   | Watchdog Timer (WDT)             | 27 | 19 | Datash  | neet Revision History                 | 60 |



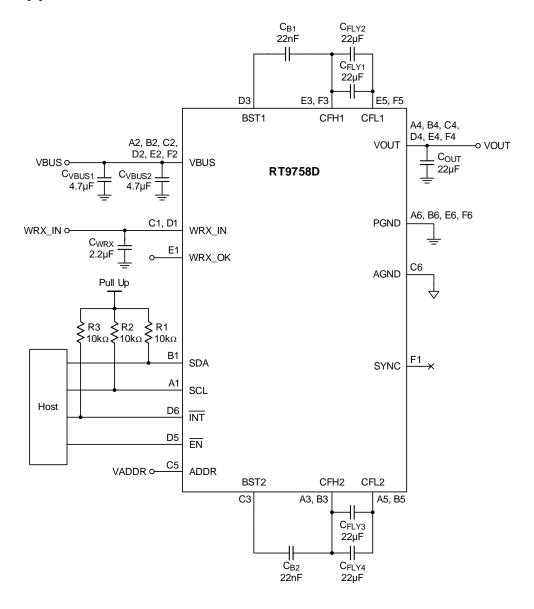
## 6 Pin Configuration

(TOP VIEW)



WL-CSP-36B 2.74x2.84 (BSC)

# 7 Functional Pin Description


| Pin No.                   | Pin Name | I/O | Pin Function                                                                                                                                                                                                |
|---------------------------|----------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1                        | SCL      | DI  | $\mbox{I}^2\mbox{C}$ serial clock line. Connect to 1.8V/3.3V pull-up voltage via 10k $\Omega$ pull-up resistor.                                                                                             |
| A2, B2, C2,<br>D2, E2, F2 | VBUS     | Р   | These pins are the input power supply and must be connected together on the PCB. Two $4.7\mu F$ capacitors must be connected to VBUS and GND.                                                               |
| A3, B3                    | CFH2     | Р   | Flying capacitor positive node. Two $22\mu F$ capacitors must be connected to CFL2 and CFH2 and placed as close as possible to the device. These pins must be connected together on the PCB.                |
| A4, B4, C4,<br>D4, E4, F4 | VOUT     | Р   | Power supply. Connect to positive terminal of the battery pack or the input of the next stage charger IC. Must be connected together on the PCB. One $22\mu F$ capacitor must be connected to VOUT and GND. |
| A5, B5                    | CFL2     | Р   | Flying capacitor negative node. Two $22\mu F$ capacitors must be connected to CFL2 and CFH2 and placed as close as possible to the device. These pins must be connected together on the PCB.                |
| A6, B6, E6, F6            | PGND     | Р   | Power ground pin.                                                                                                                                                                                           |
| B1                        | SDA      | DIO | $\mbox{I}^2\mbox{C}$ serial data line. Connect to 1.8V/3.3V pull-up voltage via $10\mbox{k}\Omega$ pull-up resistor.                                                                                        |
| C1, D1                    | WRX_IN   | Р   | Connect to wireless power receiver output. One $2.2\mu\text{F}$ capacitor must be connected to WRX_IN and GND.                                                                                              |
| С3                        | BST2     | Р   | Charge pump for gate drive. Connect a 22nF capacitor between BST2 and CFH2.                                                                                                                                 |
| C5                        | ADDR     | DI  | Provide different voltage level at ADDR and GND to assign address of the device.                                                                                                                            |
| C6                        | AGND     | Р   | Analog ground pin.                                                                                                                                                                                          |

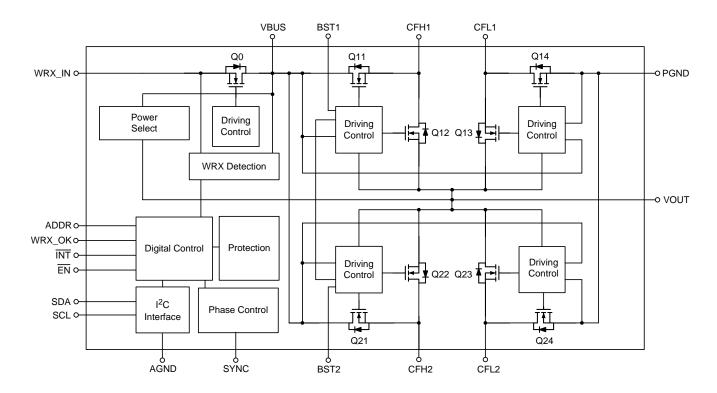


| Pin No. | Pin Name | I/O | Pin Function                                                                                                                                                                                       |
|---------|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D3      | BST1     | Р   | Charge pump for gate drive. Connect a 22nF capacitor between BST1 and CFH1.                                                                                                                        |
| D5      | ĒN       | DI  | Device enable control pin. Pull high to disable device. I <sup>2</sup> C is still available when the $\overline{\text{EN}}$ pin is pulled high.                                                    |
| D6      | ĪNT      | DO  | Open drain interrupt output. Connect to pull-up voltage via $10k\Omega$ pull-up resistor. Normally high, when an event happens, the $\overline{\text{INT}}$ pin sends a 256µs low pulse to system. |
| E1      | WRX_OK   | Р   | Push-pull structure. When WRX_IN is higher than WRX_INSERT level, this pin will pull high to inform system.                                                                                        |
| E3, F3  | CFH1     | Р   | Flying capacitor positive node. Two $22\mu F$ capacitors must be connected to CFL1 and CFH1 and placed as close as possible to the device. These pins must be connected together on the PCB.       |
| E5, F5  | CFL1     | Р   | Flying capacitor negative node. Two $22\mu F$ capacitors must be connected to CFL1 and CFH1 and placed as close as possible to the device. These pins must be connected together on the PCB.       |
| F1      | SYNC     | AIO | Push-pull structure. The sync pin of the master device is connected to the sync pin of the slave device. Leave the pin floating in standalone mode.                                                |



# **8 Typical Application Circuit**




**Table 1. BOM List** 

| Name                                 | Part Number       | Description                      | Package | Manufacturer |
|--------------------------------------|-------------------|----------------------------------|---------|--------------|
| CVBUS1,<br>CVBUS2                    | GRM188R6YA475KE15 | CAP, CERM, 4.7μF, 35V, ±10%, X5R | 0603    | MuRata       |
| CWRX_IN                              | GRM155R6YA225ME11 | CAP, CERM, 2.2μF, 35V, ±20%, X5R | 0402    | MuRata       |
| CFLY1,<br>CFLY2,<br>CFLY3,<br>CFLY4, | GRM21BR61E226ME44 | CAP, CERM, 22μF, 25V, ±20%, X5R  | 0805    | MuRata       |
| Соит                                 | GRM21BR61E226ME44 | CAP, CERM, 22μF, 25V, ±20%, X5R  | 0805    | MuRata       |
| CB1, CB2                             | GRM033R61C223KE84 | CAP, CERM, 22nF, 16V, ±10%, X5R  | 0201    | MuRata       |
| R1, R2, R3                           | CRCW040210K0JNED  | RES, 10k, 5%, 0.063W             | 0402    | Vishay-Dale  |

RICHTEK is a registered trademark of Richtek Technology Corporation.



# 9 Functional Block Diagram





## 10 Absolute Maximum Ratings

#### (Note 2)

| Supply Pin Voltage, WRX_IN                         | 1.4V to 28V      |
|----------------------------------------------------|------------------|
| Supply Pin Voltage, VBUS                           | - −1.4V to 28V   |
| Supply Pin Voltage, VOUT                           | 1.4V to 16.5V    |
| Terminal Pin Voltage, BST1, BST2                   | 0.3V to 34V      |
| Terminal Pin Voltage, CFH1, CFH2                   | 0.3V to 24V      |
| Terminal Pin Voltage, CFL1, CFL2                   | 0.3V to 16.5V    |
| Differential Pin Voltage, VBUS to WRX_IN           | 0.3V to 28V      |
| Differential Pin Voltage, BST to CFH               | 1V to 24V        |
| • Terminal Pin Voltage, SDA, SCL, INT, EN          | 0.3V to 6V       |
| Terminal Pin Voltage, ADDR, SYNC, WRX_OK           | - −0.3V to 6V    |
| Terminal Pin Current, INT                          | - 0mA to 6mA     |
| • Power Dissipation, PD @ TA = 25°C                |                  |
| WL-CSP-36B 2.74x2.84 (BSC)                         | - 2.88W          |
| Package Thermal Resistance (Note 3)                |                  |
| WL-CSP-36B 2.74x2.84 (BSC), $\theta$ JA            | - 34.7°C/W       |
| • Lead Temperature (Soldering, 10 sec.)            | - 260°C          |
| Junction Temperature                               | 40°C to 150°C    |
| Storage Temperature Range                          | - −65°C to 150°C |
| • ESD Susceptibility (Note 4)                      |                  |
| HBM (Human Body Model), per ANSI/ESDA/JEDEC JS-001 | - ±2kV           |
|                                                    |                  |

- Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 3. θJA is measured under natural convection (still air) at TA = 25°C with the component mounted on a high effective-thermalconductivity four-layer test board on a JEDEC 51-7 thermal measurement standard.
- Note 4. Devices are ESD sensitive. Handling precautions are recommended.

# 11 Recommended Operating Conditions

#### (Note 5)

| Supply Input Voltage Range, WRX_IN, VBUS (Bypass Mode)                                  | 4V to 13V     |
|-----------------------------------------------------------------------------------------|---------------|
| Supply Input Voltage Range, WRX_IN, VBUS (DIV2 Mode)                                    | 7.4V to 21V   |
| Output Voltage Range, VOUT (Reverse Bypass Mode)                                        | 4V to 13V     |
| Output Voltage Range, VOUT (Reverse DIV2 Mode)                                          | 3.7V to 10.5V |
| • Positive flying capacitor Voltage Range, CFH1, CFH2                                   | 0V to 21V     |
| Negative flying capacitor Voltage Range, CFL1, CFL2                                     | 0V to 10.5V   |
| Analog Voltage Range, ADDR, SYNC, WRX_OK                                                | 0V to 5V      |
| • I/O Control Voltage Range, SDA, SCL, $\overline{\text{INT}}$ , $\overline{\text{EN}}$ | 0V to 5V      |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

is a registered trademark of Richtek Technology Corporation.



• Charger Current Range, IOUT (DIV2 Mode) ------ 0A to 6A • Charger Current Range, IOUT (BYPASS Mode) ----- 0A to 5A • Junction Temperature Range ----- -40°C to 125°C

Note 5. The device is not guaranteed to function outside its operating conditions.

### 12 Electrical Characteristics

(T<sub>A</sub> = 25°C, unless otherwise specified)

| Parameter                   | Symbol             | Test Conditions                                                                                                                                       | Min | Тур  | Max | Unit |
|-----------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|------|
| Power Select and Source     | 9                  |                                                                                                                                                       |     |      |     |      |
|                             | IBUS_IQ_PRESENT    | EN = 1.8V, VBUS = 5.5V,<br>VOUT = 0V, WRX_IN = 0V, Q0<br>turn off, all pull-down resistors<br>disable, WDT disable                                    |     | 15   | 22  | μА   |
|                             | IBUS_IQ_STANDBY    | EN = 0V, VBUS = 5.5V,<br>VOUT = 0V, WRX_IN = 0V, Q0<br>turn off, all pull-down resistors<br>disable, WDT disable, CHG_EN<br>= 0                       |     |      | 300 | μА   |
| VBUS Quiescent Current      | IBUS_IQ_DIV2       | EN = 0V, VBUS = 20V,<br>VOUT = 0V, WRX_IN = 0V, Q0<br>turn off, all pull-down resistors<br>disable, WDT disable, CHG_EN<br>= 1, in DIV2 mode (Note 6) |     |      | 12  | mA   |
|                             | IBUS_IQ_BYPASS     | EN = 0V, VBUS = 5.5V,<br>VOUT = 0V, WRX_IN = 0V, Q0<br>turn off, all pull-down resistors<br>disable, WDT disable, CHG_EN<br>= 1, in bypass mode       | 1   | 1.65 |     | mA   |
|                             | IWRX_IN_IQ_PRESENT | EN = 1.8V, WRX_IN = 5.5V,<br>VOUT = 0V, Q0 turn on, all of<br>pull-down resistor disable, WDT<br>disable                                              | I   | 15   | 22  | μА   |
|                             | IWRX_IN_IQ_STANDBY | EN = 0V, WRX_IN = 5.5V,<br>VOUT = 0V, Q0 turn on, all<br>pull-down resistors disable, WDT<br>disable, CHG_EN = 0                                      |     |      | 450 | μА   |
| WRX_IN Quiescent<br>Current | lwrx_in_iq_div2    | EN = 0V, WRX_IN = 20V, VOUT<br>= 0V, Q0 turn on, all pull-down<br>resistors disable, WDT disable,<br>CHG_EN = 1, in DIV2 mode<br>(Note 6)             | -   |      | 12  | mA   |
|                             | IWRX_IN_IQ_BYPASS  | EN = 0V, WRX_IN = 5.5V,<br>VOUT = 0V, Q0 turn on, all<br>pull-down resistors disable, WDT<br>disable, CHG_EN = 1, in Bypass<br>mode                   | -   | 1.65 |     | mA   |

www.richtek.com



| Parameter                              | Symbol                          | Test Conditions                                                                                                   | Min | Тур | Max | Unit |
|----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| VOUT Quiescent Current                 | IOUT_IQ_PRESENT                 | EN = 1.8V, VOUT = 7.4V,<br>WRX_IN = 0V, Q0 turn off, all<br>pull-down resistors disable, WDT<br>disable           | -   | 15  | 22  | μА   |
| VOOT Quiescent Current                 | IOUT_IQ_STANDBY                 | EN = 0V, VOUT = 7.4V,<br>WRX_IN = 0V, Q0 turn off, all<br>pull-down resistors disable, WDT<br>disable, CHG_EN = 0 | I   | -   | 300 | μА   |
| VDDA UVLO Threshold                    | VDDA_UVLO_TH                    | VDDA rising, $\overline{EN} = 0V$                                                                                 | 1   | 2.6 |     | V    |
| VDDA UVLO Hysteresis                   | VDDA_UVLO_HY                    | $V_{DDA}$ falling, $\overline{EN} = 0V$                                                                           | 1   | 0.6 |     | V    |
| WRX_IN Insert Threshold                | VWRX_IN_INSERT_TH               | WRX_IN rising                                                                                                     | 3   | 3.1 | 3.2 | V    |
| WRX_IN Insert Threshold Deglitch Time  | twrx_in_insert_deg              |                                                                                                                   | 1   | 3   |     | μS   |
| WRX_IN Insert<br>Hysteresis            | VWRX_IN_INSERT_HY               | WRX_IN falling                                                                                                    | 50  | 150 | 250 | mV   |
| VBUS Insert Threshold                  | VBUS_INSERT_TH                  | VBUS rising                                                                                                       | 3   | 3.1 | 3.2 | V    |
| VBUS Insert Threshold Deglitch Time    | tvbus_insert_deg                |                                                                                                                   |     | 3   |     | μS   |
| VBUS Insert Hysteresis                 | VBUS_INSERT_HY                  | V <sub>B</sub> us falling                                                                                         | 50  | 150 | 250 | mV   |
| VOUT Insert Threshold                  | Vout_insert_th                  | Vout rising                                                                                                       | 3.3 | 3.5 | 3.7 | V    |
| VOUT Insert Threshold<br>Deglitch Time | tVOUT_INSERT_DEG                |                                                                                                                   |     | 3   |     | μS   |
| VOUT Insert Hysteresis                 | VOUT_INSERT_HY                  | Vout falling                                                                                                      | 180 | 200 | 235 | mV   |
| Cap Divider and Bypass                 | Mode On-Resistance              |                                                                                                                   |     |     |     |      |
| Q0 RON                                 | RQ0                             | WRX_IN = 3.1V to 21V, Charge enable                                                                               |     | 25  | 35  | mΩ   |
| Q11, Q21 RON                           | RQ11, RQ21                      | VOUT = 3.5V to 10.5V, in DIV2 mode                                                                                |     | 35  | 49  | mΩ   |
| Q12, Q22 RON                           | RQ12, RQ22                      | VOUT = 3.5V to 10.5V, in DIV2 mode                                                                                |     | 25  | 35  | mΩ   |
| Q13, Q23 RON                           | RQ13, RQ23                      | VOUT = 3.5V to 10.5V, in DIV2 mode                                                                                |     | 25  | 35  | mΩ   |
| Q14, Q24 RON                           | RQ14, RQ24                      | VOUT = 3.5V to 10.5V, in DIV2 mode                                                                                |     | 25  | 35  | mΩ   |
| Bypass RON                             | (RQ11 + RQ12),<br>(RQ21 + RQ22) | VOUT = 3.5V to 14V, in Bypass mode                                                                                |     | 30  | 40  | mΩ   |



| Parameter                 | Symbol            | Test Conditions                                                                                                                     | Min   | Тур  | Max   | Unit  |  |
|---------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|-------|--|
| PWM Frequency             |                   |                                                                                                                                     |       |      |       |       |  |
|                           |                   | Select by register 0x0F[5:3] = 111                                                                                                  | 1350  | 1500 | 1650  |       |  |
|                           |                   | Select by register $0x0F[5:3] = 110$ (Note 6)                                                                                       | 900   | 1000 | 1100  |       |  |
|                           |                   | Select by register 0x0F[5:3] = 011                                                                                                  | 765   | 900  | 1035  |       |  |
| Charge Switch Frequency   | fsw               | Select by register $0x0F[5:3] = 101$ (Note 6)                                                                                       | 675   | 750  | 825   | kHz   |  |
| Charge Switch Frequency   | 15W               | Select by register $0x0F[5:3] = 010$ (Note 6)                                                                                       | 510   | 600  | 690   | NI IZ |  |
|                           |                   | Select by register 0x0F[5:3] = 100, default                                                                                         | 450   | 500  | 550   |       |  |
|                           |                   | Select by register $0x0F[5:3] = 001$ (Note 6)                                                                                       | 382.5 | 450  | 517.5 |       |  |
|                           |                   | Select by register 0x0F[5:3] = 000                                                                                                  | 255   | 300  | 345   |       |  |
| Protection                |                   |                                                                                                                                     |       |      |       |       |  |
| VOUT OVP Range            | VOUT_OVP_RAN      | Rising                                                                                                                              | 7     |      | 14    | V     |  |
| VOUT OVP Step Size        | VOUT_OVP_SIZE     |                                                                                                                                     |       | 1    |       | V     |  |
| VOUT OVP Accuracy         | VOUT_OVP_ACC      |                                                                                                                                     | -1.5  |      | 1.5   | %     |  |
| VOUT OVP Deglitch Time    | tVOUT_OVP_DEG     |                                                                                                                                     |       | 4    |       | μS    |  |
| WRX_IRE OCP Range         | IWRX_IRE_OCP_RAN  | Rising                                                                                                                              | 1     |      | 6     | Α     |  |
| WRX_IRE OCP Step<br>Size  | IWRX_IRE_OCP_SIZE |                                                                                                                                     |       | 500  |       | mA    |  |
|                           |                   | IWRX_IRE_OCP = 1A to 4A                                                                                                             | -5    |      | 5     |       |  |
| WRX_IRE OCP Accuracy      | IWRX_IRE_OCP_ACC  | IWRX_IRE_OCP = 4.5A to 6A (Note 6)                                                                                                  | -10   |      | 10    | %     |  |
| WRX_IRE OCP Deglitch Time | twrx_ire_ocp_deg  |                                                                                                                                     |       | 50   |       | μS    |  |
| VBUS OVP Range            | VBUS_OVP_RAN      | Rising                                                                                                                              | 7.25  |      | 22    | V     |  |
| VBUS OVP Step Size        | VBUS_OVP_SIZE     |                                                                                                                                     |       | 250  |       | mV    |  |
| VBUS OVP Accuracy         | VBUS_OVP_ACC      | V <sub>BUS_OVP</sub> = 9V to 22V                                                                                                    | -2    |      | 2     | %     |  |
| VBUS OVP Hysteresis       | VBUS_OVP_HYS      |                                                                                                                                     |       | 400  |       | mV    |  |
| VBUS OVP Reaction<br>Time | tvbus_ovp_re      | During between VBUS over VBUS_OVP threshold and device start to turn off charger, VBUS_OVP set 1.1 times the level of VBUS (Note 6) |       | 75   |       | ns    |  |
| IBUS OCP Range            | IBUS_OCP_RAN      | Rising                                                                                                                              | 2     |      | 6     | Α     |  |
| IBUS OCP Step Size        | IBUS_OCP_SIZE     |                                                                                                                                     |       | 500  |       | mA    |  |



| Parameter                           | Symbol             | Test Conditions                                                                                                   | Min  | Тур   | Max   | Unit |
|-------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------|------|-------|-------|------|
|                                     |                    | In bypass mode                                                                                                    | -10  |       | 10    |      |
| IBUS OCP Accuracy                   | IBUS_OCP_ACC       | In DIV2 mode, fsw = 500kHz,<br>IBUS_OCP = 2A to 3A                                                                | -15  |       | 15    | %    |
| IBUS OCP Deglitch                   | tIBUS_OCP_DEG      |                                                                                                                   |      |       | 100   | μS   |
| VOUT_ERR Detect Level               | tvout_err          | V <sub>BUS</sub> = 5V, in Bypass or DIV2 mode                                                                     | 0.8  | 1     | 1.2   | V    |
| VOUT_ERR Off Time                   | tvout_err_off_time | Only active in Bypass mode, select by register 0x11[1] = 0, default                                               | 36   | 40    | 44    | ms   |
|                                     |                    | Only active in Bypass mode, select by register 0x11[1] = 1                                                        | 72   | 80    | 88    |      |
| CFLY_DIAG Detect Level              | VCFLY_DIAG         | Detect CFL pin voltage when CFLY pre-charge is finished in DIV2 mode or reverse DIV2 mode.                        | 0.8  | 1     | 1.2   | V    |
| Thermal Shutdown<br>Threshold       | TDIE_OTP_TH        | ( <u>Note 6</u> )                                                                                                 |      | 140   |       | °C   |
| Thermal Shutdown<br>Hysteresis      | TDIE_OTP_HYS       | ( <u>Note 6</u> )                                                                                                 |      | 20    |       | °C   |
| Thermal Shutdown                    | ttdie_deg          | Rising                                                                                                            |      | 10    |       | ms   |
| Deglitch Time                       | TIDIC_DEG          | Falling                                                                                                           |      | 160   |       | 1113 |
| VBUS_LOW_ERR                        | VBUS_LOW_ERR_ACC   | VBUS_LOW_ERR = VBUS/VOUT, falling threshold for device can start reverse DIV2 mode but cannot start DIV2 mode.    | 1.95 | 1.975 | 2     | V/V  |
| Accuracy                            |                    | VBUS_LOW_ERR = VBUS/VOUT, falling threshold for device can start reverse bypass mode but cannot start bypass mode | 0.98 | 0.99  | 1     |      |
| VBUS_LOW_ERR                        | VBUS_LOW_ERR_HYS   | VBUS_LOW_ERR rising hysteresis for device can start DIV2 mode but cannot start reverse DIV2 mode.                 |      |       | 0.025 |      |
| Hysteresis                          |                    | VBUS_LOW_ERR rising hysteresis for device can start bypass mode but cannot start reverse bypass mode.             |      |       | 0.018 | V/V  |
| VBUS LOW ERR<br>Deglitch            | tvbus_low_err_deg  |                                                                                                                   |      |       | 15    | μS   |
| Converter OCP<br>Threshold          | ICON_OCP_TH        | fsw = 500kHz, VBUS = 10V                                                                                          | 10.8 | 12    | 13.2  | А    |
| Function Threshold and              | Accuracy           |                                                                                                                   |      |       |       |      |
| VOUT Pre-Charge<br>Current Range    | IOUT_PRE_CHG_RAN   | Default = 660mA per phase                                                                                         | 330  |       | 660   | mA   |
| VOUT Pre-Charge<br>Current Accuracy | IOUT_PRE_CHG_ACC   | VBUS = 9.5V, in DIV2 single phase mode, PRECHARGE_CURRENT = 660mA                                                 | -20  |       | 20    | %    |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.



| Parameter                           | Symbol                 | Test Conditions                                                                    | Min  | Тур  | Max  | Unit |
|-------------------------------------|------------------------|------------------------------------------------------------------------------------|------|------|------|------|
|                                     |                        | Select by register 0x11[3:2] = 00                                                  |      | 0.5  |      |      |
|                                     |                        | Select by register 0x11[3:2] = 01                                                  |      | 1    |      |      |
| VOUT Pre-Charge Timing              | tVOUT_PRE_CHG          | Select by register 0x11[3:2] = 10                                                  |      | 2    |      | ms   |
|                                     |                        | Select by register 0x11[3:2] = 11 (Default)                                        | -    | 4    |      |      |
| CFLY Pre-Charge<br>Current Range    | ICFLY_PRE_CHG_RAN      | Default = 660mA per phase                                                          | 330  |      | 660  | mA   |
| CFLY Pre-Charge<br>Current Accuracy | ICFLY_PRE_CHG_ACC      | VBUS = 9.5V, in DIV2 single phase mode, PRECHARGE_CURRENT = 660mA                  | -20  | -    | 20   | %    |
|                                     |                        | Select by register 0x11[7:6] = 00                                                  | -    | 0.5  |      |      |
|                                     |                        | Select by register 0x11[7:6] = 01                                                  |      | 1    |      |      |
| CFLY Pre-Charge Timing              | tCFLY_PRE_CHG          | Select by register 0x11[7:6] = 10                                                  | I    | 2    |      | ms   |
|                                     |                        | Select by register 0x11[7:6] = 11 (Default)                                        | 1    | 4    |      |      |
| AT Function Threshold Range         | VAT_FUNCTION_RAN       |                                                                                    | 9    | -    | 12   | V    |
| AT Function Threshold<br>Step Size  | VAT_FUNCTION_SIZE      |                                                                                    |      | 0.5  |      | ٧    |
| AT Function Threshold<br>Accuracy   | VAT_FUNCTION_ACC       | Rising                                                                             | -150 |      | 200  | mV   |
| AT Function Hysteresis              | VAT_FUNCTION_HYS       | Falling                                                                            |      | 400  |      | mV   |
| AT Function Deglitch                | tat_function_deg       |                                                                                    | 8    | 10   | 12   | ms   |
| Synchronize Function                |                        |                                                                                    |      |      |      |      |
| SYNC Output High Level              | Voh_sync               | VBUS = 5V to 21V, synchronize function enable, master mode                         |      | 4.2  |      | \    |
| SYNC Output Low Level               | Vol_sync               | VBUS = 5V to 21V, synchronize function enable, master mode                         | -0.3 |      | 0.3  | ٧    |
| SYNC Duty Cycle                     | D <sub>MAX</sub> _SYNC | DIV2 mode, synchronize function enable, master mode (Note 6)                       |      |      | 50   | %    |
| SYNC Frequency                      | fsw_sync               | fsw = 500kHz, synchronize<br>frequency is twice as switching<br>frequency (Note 6) | 900  | 1000 | 1100 | kHz  |
| SYNC Output Current<br>Limit        | ILIM_SYNC              | SYNC pin short, WRX_IN = 10V                                                       |      |      | 42   | mA   |
| Pull Down Resistor                  |                        |                                                                                    |      |      |      |      |
| VBUS Pull Down                      | RVBUS_PD               | VBUS = 5V to 12V                                                                   |      | 0.75 |      | kΩ   |
| WRX_IN Pull Down                    | RWRX_IN_PD             | WRX_IN = 5V to 12V                                                                 |      | 1    |      | kΩ   |
| VOUT Pull Down                      | RVOUT_PD               | VOUT = 5V to 12V                                                                   |      | 0.75 |      | kΩ   |



| Parameter                                         | Symbol          | Test Conditions                                                                     | Min  | Тур   | Max  | Unit |
|---------------------------------------------------|-----------------|-------------------------------------------------------------------------------------|------|-------|------|------|
| Watchdog Time Out                                 |                 |                                                                                     |      | •     |      | •    |
|                                                   |                 | No I <sup>2</sup> C communication for 3.75s, set by Register 0x0E[6:4] = 000        | 3    | 3.75  | 4.5  |      |
|                                                   |                 | No $I^2C$ communication for 7.5s, set by Register $0x0E[6:4] = 001$                 | 6    | 7.5   | 9    |      |
|                                                   |                 | No I <sup>2</sup> C communication for<br>11.25s, set by Register 0x0E[6:4]<br>= 010 | 9    | 11.25 | 13.5 |      |
| Watch dog Time Out                                | WDT             | No I <sup>2</sup> C communication for 15s, set by Register 0x0E[6:4] = 011          | 12   | 15    | 18   |      |
| Watchdog Time Out                                 | WDT             | No I <sup>2</sup> C communication for 30s, set by Register 0x0E[6:4] = 100, default | 24   | 30    | 36   | sec  |
|                                                   |                 | No I <sup>2</sup> C communication for 60s, set by Register 0x0E[6:4] = 101          | 48   | 60    | 72   |      |
|                                                   |                 | No I <sup>2</sup> C communication for 90s, set by Register 0x0E[6:4] = 110          | 72   | 90    | 108  | -    |
|                                                   |                 | No $I^2C$ communication for 120s, set by Register 0x0E[6:4] = 111                   | 96   | 120   | 144  |      |
| Control Input Pin (EN)                            |                 |                                                                                     |      |       |      |      |
| Input High Threshold<br>Voltage                   | VIH_EN          |                                                                                     | 1.3  |       | 1    | V    |
| Input Low Threshold Voltage                       | VIL_EN          |                                                                                     | 1    |       | 0.4  | V    |
| Input Floating Threshold Voltage                  | VIH_EN_FLOATING | The EN pin is floating                                                              | 1    | 1.7   | 1    | V    |
| Logic Output Pin (INT)                            |                 |                                                                                     |      |       |      |      |
| INT Pin Pull Low Time                             | tint_pull_low   |                                                                                     | -    | 256   | 1    | μS   |
| Logic Output Pin (WRX_0                           | OK)             |                                                                                     |      |       |      |      |
| WRX_OK Output High<br>Level                       | Voh_wrx_ok      | WRX_IN > 5V, Q0 turn on                                                             | 4.8  | 5     | 5.2  | ٧    |
| WRX_OK Output Low<br>Level                        | Vol_WRX_OK      | WRX_IN < WRX_INSERT                                                                 | -0.3 |       | 0.3  | V    |
| WRX_OK Output Current Limit                       | ILIM_WRX_OK     | WRX_OK pin short                                                                    | -    |       | 42   | mA   |
| Address Detection                                 |                 |                                                                                     |      |       |      |      |
| Input Low Threshold for Slave Address = 0x50      | VIL_ADDRESS     |                                                                                     | -    |       | 0.4  | V    |
| Input Floating Threshold for Slave Address = 0x51 | VIM_ADDRESS     | The ADDR pin is floating                                                            |      | 0.9   |      | V    |
| Input High Threshold for Slave Address = 0x52     | VIH_ADDRESS     |                                                                                     | 1.3  |       |      | V    |
| Input Leakage Current                             | ILKG_ADDRESS    | The ADDR pin = 0V or 1.8V                                                           |      |       | 5    | μА   |

DS9758D-00 May 2024 www.richtek.com

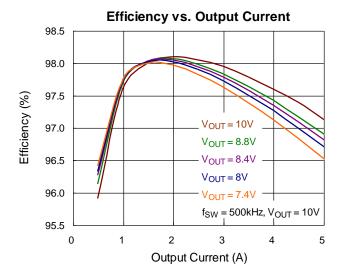


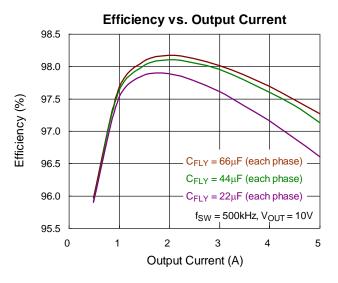
| Parameter                                  | Symbol                 | Test Conditions                                                                                                                                                                                                                                                           | Min | Тур | Max | Unit |
|--------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Timing                                     |                        |                                                                                                                                                                                                                                                                           |     |     |     |      |
| Device Wake Up Time                        | twake_up               | Duration time between VDDA > VDDA_UVLO and device can start I <sup>2</sup> C communication                                                                                                                                                                                |     | 500 |     | μS   |
| Device into Standby<br>Mode Time           | tSTANDBY_DELAY         | Duration time from Present mode to Standby mode                                                                                                                                                                                                                           | 1   | 300 |     | μS   |
| Soft-Start Time for<br>Bypass Mode         | tss_bypass             | Timing about VOUT pre-charge to VBUS and Bypass RON fully turn on when Bypass mode is enabled with no load, Pre-charge current = 660mA, VOUT_ERR_ON_TIME = 4msec, COUT = 22µF x 1, VBUS = 5V                                                                              |     | 4   |     | ms   |
| Soft-Start Time for DIV2<br>Mode           | tss_div2               | Timing about CFLY and VOUT pre-charge to (VBUS/2) and start switching when DIV2 mode is enabled with no load, Pre-charge current = $660$ mA, CFLY_DIAG_TIME = $4$ msec, VOUT_ERR_ON_TIME = $4$ msec, CFLY = $22\mu$ F x 2 each phase, COUT = $22\mu$ F x 1, VBUS = $10$ V |     | 9   |     | ms   |
| Soft-Start Time for<br>Reverse Bypass Mode | tss_reverse_bypas<br>s | Timing about Bypass RON fully turn on when Reverse Bypass mode is enabled with no load, Pre-charge current = 660mA, Vout_err_on_time = 4msec, Vout = 5V                                                                                                                   |     | 4   |     | ms   |
| Soft-Start Time for<br>Reverse DIV2 Mode   | tss_reverse_div2       | Timing about CFLY from 0V to 5V and start switching when reverse DIV2 mode is enabled with no load, Pre-charge current = 660mA, CFLY_DIAG_TIME = 4msec, CFLY = 22µF x 2 each phase, Vout = 5V                                                                             | 1   | 5   |     | ms   |
| Turn on Q0 Delay Time                      | tQ0_DELAY              | 0x0D[1:0] = 10, Duration time<br>between WRX_IN ><br>WRX_INSERT and Q0 start to<br>turn on                                                                                                                                                                                |     | 2   |     | ms   |
| OVD Becovery Time                          | tour recovery          | Only active in Bypass mode with register 0x0E[7] = 1, Select by register 0x0F[7] = 0                                                                                                                                                                                      | 17  | 21  | 25  |      |
| OVP Recovery Time                          | tovp_recovery          | Only active in Bypass mode with register 0x0E[7] = 1, Select by register 0x0F[7] = 1                                                                                                                                                                                      | 80  | 100 | 120 | ms   |
| WRX_OK Pull Up Time                        | twrx_ok_pull_up        | VBUS > 5V, in standby mode,<br>WRX_OK pin is floating,<br>Duration time between WRX_IN<br>> WRX_INSERT and WRX_OK<br>pull to high level                                                                                                                                   |     | 16  |     | μS   |

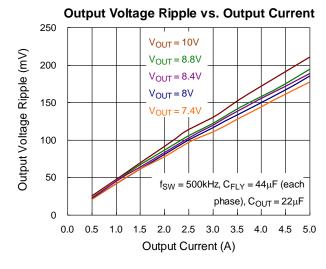


| Parameter                                      | Symbol    | Test Conditions             | Min  | Тур | Max      | Unit     |
|------------------------------------------------|-----------|-----------------------------|------|-----|----------|----------|
| Watchdog Reset Wait<br>Time                    | twdt_wait |                             |      | 32  |          | ms       |
| I <sup>2</sup> C Characteristics               |           |                             |      |     | •        |          |
| SCL, SDA High-Level<br>Input Threshold Voltage | VIH_I2C   |                             | 1.5  |     |          | V        |
| SCL, SDA Low-Level<br>Input Threshold Voltage  | VIL_I2C   |                             |      |     | 0.4      | ٧        |
|                                                |           | Standard-mode               |      |     | 100      | kHz      |
|                                                |           | Fast-mode                   |      |     | 400      |          |
| SCL Clock Frequency                            | fclk      | Fast-mode plus              |      |     | 1000     |          |
|                                                |           | High-speed mode Cb = 400pF  | -    |     | 1.7      | MHz      |
|                                                |           | High-speed mode Cb = 100pF  | -    |     | 3.4      | IVIITZ   |
|                                                |           | Standard-mode               | 4.7  |     |          |          |
| Bus Free Time between Stop and Start Condition | tBUF      | Fast-mode                   | 1.3  |     |          | μS       |
| Stop and Start Sondition                       |           | Fast-mode plus              | 0.5  |     |          |          |
|                                                | thd;sta   | Standard-mode               | 4    |     |          | μs       |
|                                                |           | Fast-mode                   | 0.6  |     |          |          |
| (Repeated) Start Hold<br>Time                  |           | Fast-mode plus              | 0.26 |     |          |          |
| Time                                           |           | High-speed mode Cb = 400pF  | 160  |     |          |          |
|                                                |           | High-speed mode Cb = 100pF  | 160  |     |          |          |
|                                                | tsu;sta   | Standard-mode               | 4.7  |     |          | μs<br>ns |
|                                                |           | Fast-mode                   | 0.6  |     |          |          |
| (Repeated) Start Setup<br>Time                 |           | Fast-mode Plus              | 0.26 |     |          |          |
| Time                                           |           | High-speed mode Cb = 400 pF | 160  |     |          |          |
|                                                |           | High-speed mode Cb = 100 pF | 160  |     |          |          |
|                                                | tsu;sto   | Standard-mode               | 4    |     |          | μs       |
|                                                |           | Fast-mode                   | 0.6  |     |          |          |
| STOP Condition Setup Time                      |           | Fast-mode plus              | 0.26 |     |          |          |
| Tille                                          |           | High-speed mode Cb = 400pF  | 160  |     |          |          |
|                                                |           | High-speed mode Cb = 100pF  | 160  |     |          | ns       |
|                                                |           | Standard-mode               | 0.1  |     |          |          |
|                                                |           | Fast-mode                   | 0.1  |     |          | -        |
| SDA Data Hold Time                             | thd;dat   | Fast-mode plus              | 0.1  |     |          | ns       |
|                                                | ,         | High-speed mode Cb = 400pF  | 0.1  |     | 150      | 1        |
|                                                |           | High-speed mode Cb = 100pF  | 0.1  |     | 70       | =        |
|                                                |           | Standard-mode               |      |     | 3.45     |          |
| SDA Valid Acknowledge<br>Time                  | tvd;ack   | Fast-mode                   |      |     | 0.9      | μs       |
| THILE                                          |           | Fast-mode plus              |      |     | 0.45     |          |
|                                                |           |                             | 1    | L   | <u> </u> | 1        |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.





| Parameter           | Symbol  | Test Conditions            | Min  | Тур | Max | Unit |
|---------------------|---------|----------------------------|------|-----|-----|------|
| SDA Setup Time      |         | Standard-mode              | 250  |     |     | ns   |
|                     |         | Fast-mode                  | 100  |     |     |      |
|                     | tsu;dat | Fast-mode plus             | 50   |     |     |      |
|                     |         | High-speed mode Cb = 400pF | 10   |     |     |      |
|                     |         | High-speed mode Cb = 100pF | 10   |     |     |      |
| SCL Clock Low Time  | tLOW    | Standard-mode              | 4.7  |     |     | μs   |
|                     |         | Fast-mode                  | 1.3  |     |     |      |
|                     |         | Fast-mode plus             | 0.5  |     |     |      |
|                     |         | High-speed mode Cb = 400pF | 320  |     |     |      |
|                     |         | High-speed mode Cb = 100pF | 160  |     |     | ns   |
| SCL Clock High Time | thigh   | Standard-mode              | 4    |     |     |      |
|                     |         | Fast-mode                  | 0.6  |     |     | μS   |
|                     |         | Fast-mode plus             | 0.26 |     |     |      |
|                     |         | High-speed mode Cb = 400pF | 120  |     |     |      |
|                     |         | High-speed mode Cb = 100pF | 60   |     |     | ns   |


Note 6. Specification is guaranteed by design and/or correlation with statistical process control.



# 13 Typical Operating Characteristics







DS9758D-00 May 2024



### 14 Application Information

(Note 13)

#### 14.1 Operation Principle

The cap divider topology relies on a smart wall adapter to control the voltage and current of input in order to charge. Based on the cap divider topology, the 4 MOSFETs (Q1 to Q4) are used to charge and discharge flying capacitor (CFLY) alternately. The simplified circuit of cap divider is shown in <u>Figure 1</u>.

In period 1: When Q1 and Q3 are turned on and Q2 and Q4 are turned off, the CFLY and COUT are in series with VBUS. The BUS current is supplied to COUT directly. During this period, the voltage of CFLY can be expressed as equation 1:

In period 2: When Q1 and Q3 are turned off and Q2 and Q4 are turned on, the CFLY and COUT are in parallel. The current of COUT is only supplied by CFLY. During this period, the voltage of CFLY can be expressed as equation 2: VCFLY = VOUT ---- (2)

If the equation 2 is substituted into equation 1, the equation 1 can be expressed as equation 3:

If the power dissipation of topology is ignored, the output power can be expressed as equation 4:

If the equation 3 is substituted into equation 4, the IOUT can be expressed as equation 5:

$$IOUT = 2 \times IBUS ---- (5)$$

According to the equations above, the output voltage is half of the input voltage, and the output current is twice the input current in cap divider topology. For the efficiency and output ripple improvement in application, the dual phase cap divider topology with phase shift 180 degrees between phases are built in the RT9758D.

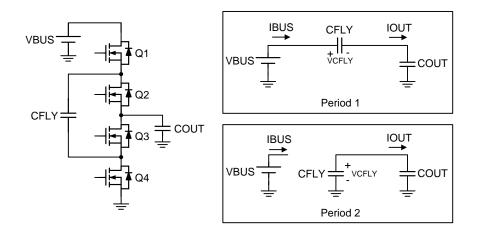



Figure 1. Simplified Circuit of Cap Divider



While the RT9758D is charging, host needs to communicate with smart wall adapter or wireless power device to control the charging current provided by the RT9758D. The communication flow between smart wall adapter, wireless power device and charge system is shown in <u>Figure 2</u>. In order to prevent abnormal events when charging, the RT9758D is established with many adjustable protections. All protection behaviors in each operation mode are shown in <u>Table 3</u>, <u>Table 4</u>, <u>Table 5</u>, and <u>Table 6</u>.

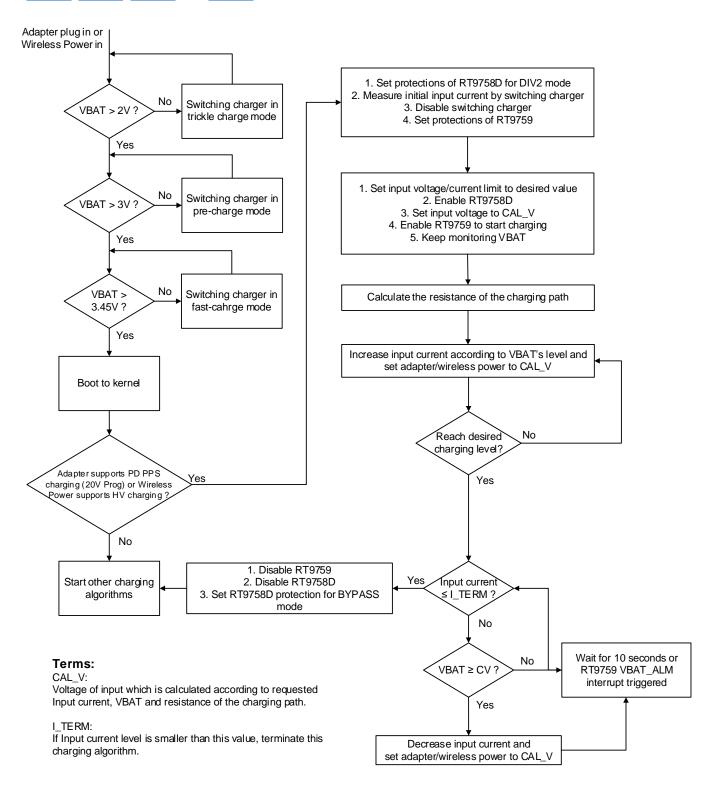



Figure 2. System Control Flow Chart

RICHTEK is a registered trademark of Richtek Technology Corporation.



#### **Device Power Up** 14.2

The device is powered by VDDA. When VDDA voltage is higher than VDDA\_UVLO threshold, the device will start working. The VDDA voltage can be powered by either VBUS or VOUT and that is dominated by the higher voltage

Once the RT9758D is powered, the device will activate the address detection mechanism to assign the slave address of device and configuration mode. The slave address of device is determined by voltage level at ADDR pin. The criteria of address detection threshold are shown in electrical characteristics list. After address detection is finished, the host can communicate with the RT9758D by I<sup>2</sup>C serial interface. Furthermore, the reaction time during VDDA > VDDA UVLO to  $I^2C$  release (twake\_UP) is around 500 $\mu$ sec.

The RT9758D includes a watchdog timer that is disabled by default. When the watchdog timer expired, WDT\_STAT and WDT\_FLAG turn to high and the INT pin is pulsed (tINT\_PULL\_LOW) 256μsec to interrupt the host. After resetting wait time (twdt\_wait) 32msec, the related registers are reset to default values. (Refer to Register Descriptions for detail). If the device stays in watchdog timeout status, host can read or write any register to return counting.

Figure 3 shows the device power on flow with protections, insert and indictor function activation list in each state. In order to reduce quiescent current when charge system is unused, the RT9758D is established with low quiescent current mode that is called present mode. If the EN pin is pulled high or floating, the RT9758D will enter present mode for power saving. In present mode, most of sensing circuit inside the RT9758D will be turned off. In other words, all of protection and insert function are inactivated. However, if the user desires WRX OK function to be active in present mode, users can set both WRX\_OK\_PSM bit and WRX\_OK\_EN bit to 1 to activate it.

If the EN pin is pulled low and set CHG EN bit to 0, this condition is called standby mode. In standby mode, the AP can catch interrupt by the INT pin if specific protection or insert is triggered. Before start charging, the AP still can set the register values by I<sup>2</sup>C protocol in present mode and standby mode.

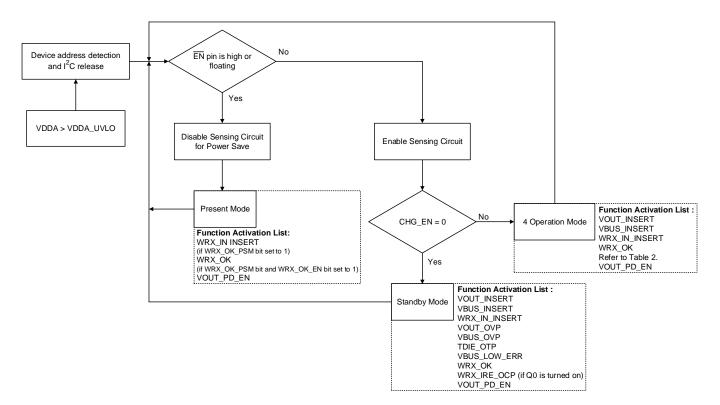



Figure 3. Device Power On Flow with Protections, Insert and Indicator Function Activation List



#### 14.3 **Protection Feature**

The RT9758D integrates 9 protections to protect device operating in unexpected condition. These protections are established in bypass mode, reverse bypass mode, DIV2 mode and reverse DIV2 mode. Table 2 shows the related configuration of 4 operation modes. For example, only let the EN pin pull to high or floating, the RT9758D will operate in present mode for low quiescent current application. If let the EN pin pull to GND and set CHG\_EN bit to 0, the RT9758D will enter standby mode. And if the EN pin pull to GND and set CHG\_EN bit to 1, the operation mode is decided by OPERATION\_MODE\_SELECTION bit and REVERSE\_MODE\_EN bit setting.

About protections established in the RT9758D, Table 3, Table 4, Table 5, and Table 6 show the protect function activation list in each mode. In Table 3 and Table 5, "Stop bypass and Stop switching" means the device will stop charge but the CHG\_EN bit still keeps 1, so the device will soft-start again immediately if VBUS\_LOW\_ERR status meets the rule and VBUS exists.

| idaio 2. comiguidam of 1 opoidam modoc |            |               |                              |                        |  |
|----------------------------------------|------------|---------------|------------------------------|------------------------|--|
| Mode                                   | EN Pin     | CHG_EN<br>bit | OPERATION_MODE_SELECTION bit | REVERSE_MODE_EN<br>bit |  |
| Present                                | H/Floating | Х             | X                            | X                      |  |
| Standby                                | L          | 0             | X                            | X                      |  |
| Bypass                                 | L          | 1             | 0                            | 0                      |  |
| Reverse Bypass                         | L          | 1             | 0                            | 1                      |  |
| DIV2 mode                              | L          | 1             | 1                            | 0                      |  |
| Reverse DIV2                           | L          | 1             | 1                            | 1                      |  |

Table 2. Configuration of 4 Operation Modes

| Table 3. Protection Function Activation List in Bypass. | Moda |
|---------------------------------------------------------|------|

| Protection Function  | Protection Method                                                                                |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------|--|--|--|
| VOUT_OVP<br>(Note 7) | Stop bypass until fault release over 21m/100msec deglitch time (Default)     Reset CHG_EN = 0    |  |  |  |
| VBUS_OVP<br>(Note 7) | Stop bypass until fault release over 21m/100msec deglitch time (Default)     2. Reset CHG_EN = 0 |  |  |  |
| IBUS_OCP             | Stop bypass                                                                                      |  |  |  |
| WRX_IRE_OCP          | Set Q0_CONTROL = 00 (Note 8)                                                                     |  |  |  |
| VOUT_ERR             | Hiccup (Note 9)                                                                                  |  |  |  |
| TDIE_OTP             | Reset CHG_EN = 0                                                                                 |  |  |  |
| CFLY_DIAG            | Not active                                                                                       |  |  |  |
| CON_OCP              | Stop bypass                                                                                      |  |  |  |
| VBUS_LOW_ERR         | Cannot do soft-start until VBUS_LOW_ERR = 0 (Note 10)                                            |  |  |  |

- Note 7. Protection Method depends on AUTO RECOVERY EN bit and IN VALID RECOVERY DEGLITCH bit.
- Note 8. The WRX\_IRE\_OCP is active only when Q0 is turned on.
- Note 9. Hiccup off time depends on VOUT ERR OFF TIME bit.
- Note 10. VBUS\_LOW\_ERR is active only before converter soft-start.

www.richtek.com



## Table 4. Protection Function Activation List in Reverse Bypass Mode

| Protection Function | Protection Method                                     |  |
|---------------------|-------------------------------------------------------|--|
| VOUT_OVP            | Reset CHG_EN = 0                                      |  |
| VBUS_OVP            | Reset CHG_EN = 0                                      |  |
| IBUS_OCP            | Reset CHG_EN = 0 and REVERSE_MODE_EN = 0              |  |
| WRX_IRE_OCP         | Set Q0_CONTROL = 00                                   |  |
| VOUT_ERR            | Not active                                            |  |
| TDIE_OTP            | Reset CHG_EN = 0 and REVERSE_MODE_EN = 0              |  |
| CFLY_DIAG           | Not active                                            |  |
| CON_OCP             | Reset CHG_EN = 0 and REVERSE_MODE_EN = 0              |  |
| VBUS_LOW_ERR        | Cannot do soft-start until VBUS_LOW_ERR = 1 (Note 10) |  |

#### Table 5. Protection Function Activation List in DIV2 Mode

| Protection Function | Protection Method                                             |  |  |  |
|---------------------|---------------------------------------------------------------|--|--|--|
| VOUT_OVP            | Stop switching                                                |  |  |  |
| VBUS_OVP            | Stop switching                                                |  |  |  |
| IBUS_OCP            | Reset CHG_EN = 0                                              |  |  |  |
| WRX_IRE_OCP         | Set Q0_CONTROL = 00                                           |  |  |  |
| VOUT_ERR            | Reset CHG_EN = 0                                              |  |  |  |
| TDIE_OTP            | Stop switching until fault release over 160msec deglitch time |  |  |  |
| CFLY_DIAG           | Reset CHG_EN = 0                                              |  |  |  |
| CON_OCP             | Stop switching                                                |  |  |  |
| VBUS_LOW_ERR        | Cannot do soft-start until VBUS_LOW_ERR = 0 (Note 10)         |  |  |  |

### Table 6. Protection Function Activation List in Reverse DIV2 Mode

| Protection Function | Protection Method                                     |  |  |
|---------------------|-------------------------------------------------------|--|--|
| VOUT_OVP            | Reset CHG_EN = 0                                      |  |  |
| VBUS_OVP            | Reset CHG_EN = 0                                      |  |  |
| IBUS_OCP            | Reset CHG_EN = 0 and REVERSE_MODE_EN = 0              |  |  |
| WRX_IRE_OCP         | Set Q0_CONTROL = 00                                   |  |  |
| VOUT_ERR            | Not active                                            |  |  |
| TDIE_OTP            | Reset CHG_EN = 0 and REVERSE_MODE_EN = 0              |  |  |
| CFLY_DIAG           | Reset CHG_EN = 0                                      |  |  |
| CON_OCP             | Reset CHG_EN = 0 and REVERSE_MODE_EN = 0              |  |  |
| VBUS_LOW_ERR        | Cannot do soft-start until VBUS_LOW_ERR = 1 (Note 10) |  |  |



#### Input and Output Overvoltage Protection (VBUS OVP, VOUT OVP)

The device integrates VBUS\_OVP and VOUT\_OVP function to monitor input and output voltage by VBUS pin and VOUT pin, respectively. When the device is in standby mode or 4 operation modes, if the VBUS voltage is higher than VBUS\_OVP threshold or the VOUT voltage is higher than VOUT\_OVP threshold, the device will start to turn off charger in tvbus\_ovp\_re time or tvout\_ovp\_deg time, respectively.

There are two register bits related to OVP protection which are AUTO RECOVERY EN and IN VALID RECOVERY DEGLITCH. According to different two of register setting, the device shows different protection method in bypass mode. For example, in bypass mode with default setting (AUTO RECOVERY EN = 1 and IN VALID RECOVERY DEGLITCH = 0), the device stops charge while OVP is triggered. And if OVP fault is released, the device will count 21msec deglitch time (tovp RECOVERY) to make sure OVP fault is released actually. After deglitch counting is finished, the device can re-start in bypass mode again. And in DIV2 mode, depending on the protection conditions, the device stops charge while OVP is triggered, if OVP fault is released the device can restart immediately again or set CHG EN = 0 when OVP is triggered in Table 5. In other two operation modes, regardless of two of bit setting, the device will set CHG EN = 0 when OVP is triggered. About OVP protection behavior, Table 7 shows relational behavior in each mode. Users can adjust the threshold of VBUS\_OVP and VOUT OVP via register setting. For safety charging, the OVP level must be set to 1.1 times the level of operating voltage. And make sure the input and output voltage are not higher than absolute maximum rating of the VBUS, WRX\_IN and VOUT pin. (Prevented by external TVS or OVP IC, etc.).

| Bypass Mode                                              |                            |                                                            |  |  |  |
|----------------------------------------------------------|----------------------------|------------------------------------------------------------|--|--|--|
| AUTO_RECOVERY_EN                                         | IN_VALID_RECOVERY_DEGLITCH | OVP Protection Behavior                                    |  |  |  |
| 0                                                        | X                          | Reset CHG_EN = 0                                           |  |  |  |
| 1                                                        | 0                          | Stop bypass until fault release over 21msec deglitch time  |  |  |  |
| 1                                                        | 1                          | Stop bypass until fault release over 100msec deglitch time |  |  |  |
| DIV2 Mode                                                |                            |                                                            |  |  |  |
| X Stop switching until fault release or reset CHG_EN = 0 |                            |                                                            |  |  |  |
| Reverse Bypass Mode and Reverse DIV2 Mode                |                            |                                                            |  |  |  |
| X                                                        | X                          | Reset CHG_EN = 0                                           |  |  |  |

**Table 7. OVP Protection Behavior in Each Mode** 

#### VBUS Charge Voltage Protection (VBUS LOW ERR) 14.3.2

The device integrates VBUS\_LOW\_ERR to prevent users from adjusting wrong VBUS for charge. In standby mode, if VBUS is lower than VBUS\_LOW\_ERR falling threshold, the VBUS\_LOW\_ERR flag and status bit will set to 1. If VBUS is higher than VBUS\_LOW\_ERR rising threshold, the VBUS \_LOW\_ERR status bit will set to 0. The VBUS LOW ERR threshold depends on OPERATION MODE SELECTION bit, if OPERATION MODE SELECTION set to 0, the VBUS\_LOW\_ERR typical falling threshold is 0.99V/V. If OPERATION\_ MODE\_SELECTION set to 1, the VBUS\_LOW\_ERR typical threshold is 1.975V/V. Before start charging in 4 operation modes, users should follow the rule of VBUS\_LOW\_ERR shown in Table 8. If VBUS\_LOW\_ERR condition does not meet the rule, the device will not enter charging process. In above case, the device will keep similarly to standby mode until the VBUS\_LOW\_ERR condition is met. For recommended setup process before start charging,

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.



set the device into standby mode (CHG\_EN = 0) and then make sure VBUS\_LOW\_ERR status, OPERATION\_MODE\_SELECTION bit and REVERSE\_MODE\_EN bit are ready. After the device starts charging, the VBUS\_LOW\_ERR function will be disabled.

Table 8. Rule of VBUS\_LOW\_ERR before Start Charging Process in 4 Operation Modes

| Operation Mode | VBUS_LOW_ERR<br>STAT | OPERATION_MODE_SELECTION bit | REVERSE_MODE_EN bit |
|----------------|----------------------|------------------------------|---------------------|
| Bypass         | 0                    | 0                            | 0                   |
| Reverse Bypass | 1                    | 0                            | 1                   |
| DIV2           | 0                    | 1                            | 0                   |
| Reverse DIV2   | 1                    | 1                            | 1                   |

#### 14.3.3 WRX Reverse Overcurrent Protection (WRX IRE OCP)

The WRX\_IRE\_OCP function monitors reverse input current from VBUS to WRX\_IN via Q0. And it is active only while Q0 is turned on. If Q0\_CONTROL bit set 10 or 11, the Q0 will turn on and WRX\_IRE\_OCP will start detecting reverse input current. If the reverse input current is larger than WRX\_IRE\_OCP threshold in twrx\_IRE\_OCP\_DEG time, the device will only reset Q0\_CONTROL bit to 00 in order to disable Q0 immediately. Users can adjust the WRX\_IRE\_OCP threshold via register setting.

#### 14.3.4 IBUS Overcurrent Protection (IBUS\_OCP)

The device integrates bidirectional IBUS\_OCP function to detect input current in 4 operation modes. In reverse DIV2 mode and reverse bypass mode, if IBUS current from VOUT to VBUS is larger than IBUS\_OCP threshold in tibus\_ocp\_deg time, the device will stop charging and reset CHG\_EN bit and REVERSE\_MODE\_EN bit to 0.

In DIV2 mode, if IBUS current from VBUS to VOUT is larger than IBUS\_OCP threshold in t<sub>IBUS\_OCP\_DEG</sub> time, the device will stop charging and reset CHG\_EN bit to 0.

In bypass mode, if IBUS current from VBUS to VOUT is larger than IBUS\_OCP threshold in t<sub>IBUS\_OCP\_DEG</sub> time, the device will stop charging and still keep CHG\_EN bit to 1. Users can adjust the IBUS\_OCP threshold via register setting.

#### 14.3.5 Converter Overcurrent Protection (CON\_OCP)

The device integrates CON\_OCP function to prevent huge abnormal converter operating current in 4 operation modes. In reverse DIV2 mode and reverse bypass mode, if the converter operating current is larger than CON\_OCP threshold, the device will stop charging and reset CHG\_EN bit and REVERSE\_ MODE\_EN bit to 0.

In DIV2 mode and bypass mode, if the converter operating current is larger than CON\_OCP threshold, the device will stop charging and still keep CHG\_EN bit to 1.

#### 14.3.6 Device Thermal Shutdown (TDIE OTP)

The device integrates TDIE\_OTP to prevent system charging in over-temperature condition. The TDIE\_ OTP function monitors die temperature. When the device is in standby mode or bypass mode, if the die temperature is higher than TDIE\_ OTP threshold in ttdector time, the device will stop charging and reset CHG\_EN bit to 0.

In DIV2 mode, if the die temperature is higher than TDIE\_ OTP threshold in tTDIE\_DEG time, the device will stop charging and until fault release over 160m seconds deglitch time. And the device will re-start again if start-up conditions are met.



When the device is in reverse bypass mode or reverse DIV2 mode, if the die temperature is higher than TDIE\_OTP threshold, the device will stop charging and reset CHG\_EN bit and REVERSE\_MODE\_EN bit both to 0.

After TDIE\_OTP is triggered, the TDIE\_OTP\_EXIT\_ FLAG will turn to high when die temperature is lower than TDIE\_OTP release threshold. For safety, the device should only enable charge again after TDIE\_OTP\_STAT is set to 0 and TDIE\_OTP\_EXIT\_ FLAG is set to 1.

#### 14.3.7 Flying Capacitor Diagnose (CFLY\_DIAG)

The device integrates CFLY\_DIAG function to diagnose the health of flying capacitors before charging. The CFLY\_DIAG function only active in soft-start process of DIV2 mode and reverse DIV2 mode. After CHG\_EN is enabled, the device starts soft-start process with corresponding soft-start time (tss\_DIV2, or tss\_REVERSE\_DIV2) in DIV2 or reverse DIV2 mode. In soft-start process, the CFLY\_DIAG function will diagnose the CFL pin level in each phase. If the CFL level is higher than CFLY\_DIAG detect level (VCFLY\_DIAG), the device will stop soft-start process and reset CHG\_EN bit to 0. The CFLY\_DIAG function will stop activating after the device charge successfully. In normal charging case, If the flying capacitor is short while charging, the device can be protected by other protections (e.g., IBUS\_OCP, VBUS\_OVP, VOUT\_OVP or CON\_OCP).

#### 14.3.8 Output Pin Error Detection (VOUT\_ERR)

The device integrates VOUT\_ERR function to prevent output pin abnormal short before charging. The VOUT\_ERR function is active only soft-start process of bypass mode and DIV2 mode. After CHG\_EN is enabled, the device starts soft-start process with corresponding soft-start time (tss\_Bypass and tss\_DIV2) in bypass or DIV2 mode. In soft-start process of DIV2 mode, the VOUT\_ERR function will detect the VOUT pin level. If the VOUT level cannot over than VOUT\_ERR detect level (VOUT\_ERR), the device will stop soft-start process and reset CHG\_EN bit to 0.

In soft-start process of bypass mode, If VOUT\_ERR function is triggered, the device will stop soft-start process and still keep CHG\_EN bit to 1. And the device will re-start again if start-up conditions are met. At bypass mode case, the device operates like Hiccup mode if VOUT pin short abnormally. The VOUT\_ERR function will stop activating after the device charge successfully.

#### 14.4 Auto Transition Function Feature (AT\_Function)

For more flexible mode change application between bypass mode and DIV2 mode, the auto transition function (AT\_Function) is established in the RT9758D to make converter mode change automatically by adjusting VBUS voltage. In register map, the AT\_FUNCTION\_EN bit is used to enable this function and the AT\_FUNCTION bit is used to set the threshold of mode transition. When the AT\_Function is active in bypass mode, if VBUS is higher than AT\_Function threshold in taT\_FUNCTION\_DEG time, the device will stop charging, set OPERATION\_MODE\_SELECTION bit to 1 and then start DIV2 charging process if the start-up conditions are met. In another case, if VBUS is lower than AT\_Function threshold when the device operates in DIV2 mode, it will stop charging, set OPERATION\_MODE\_SELECTION bit to 0 and then start bypass charging process if the start-up conditions are met. Figure 4 is the recommended operation flow for using auto transition function, users should follow step 1-4 to use auto transition function. Especially, if the user desires device be transited from bypass mode to DIV mode by using AT\_Function, be sure to enable VOUT\_PD bit to 1 before increasing VBUS voltage.

DS9758D-00 May 2024



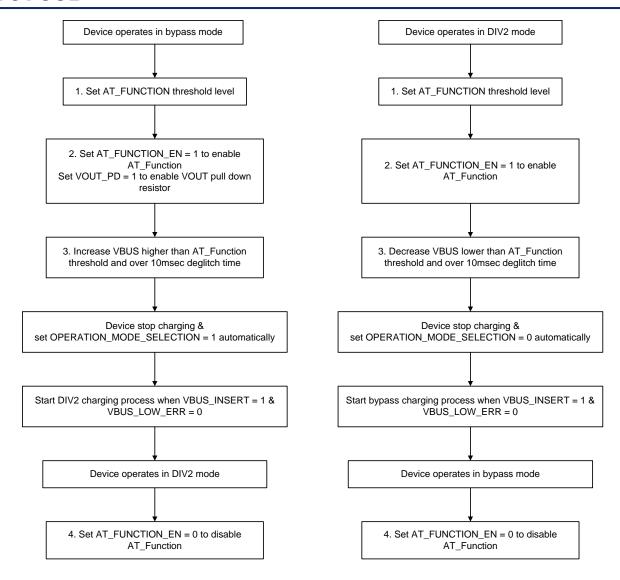



Figure 4. Operation Flow for Using Auto Transition Function



#### 14.5 Watchdog Timer (WDT)

When the device is controlled by host, all of the registers can be programmed by host. The host has to read or write any register to reset watchdog counter before watchdog timeout and it can also disable WDT function by setting WDT\_EN bits to 0. When the watchdog timer expired in standby mode and 4 operation mode, WDT\_STAT and WDT\_FLAG turn to high and  $\overline{INT}$  pin is pulsed to interrupt the host. After watchdog reset wait time (twDT\_WAIT), the different related registers are reset to default values (Refer to Register Descriptions for detail) according to operation mode and the BEHAVIOR\_AFTER\_WDT bit setting. Figure 5 shows the WDT flow chart. For example, when the watchdog timer expired in bypass mode and the BEHAVIOR\_AFTER\_WDT bit is 1, the OVP, OCP and OTP registers are reset to default value but the CHG\_EN bit and Q0\_CONTROL bit will keep as same as before. In other case, when the watchdog timer is expired, the OVP, OCP and OTP registers are reset to default value and the CHG\_EN bit and Q0\_CONTROL bit will also reset to 0 and 00, separately. If the device stays in watchdog timer suspend status, host can read or write any registers to return counting. To decrease quiescent current in present mode, the WDT timer will force disable.

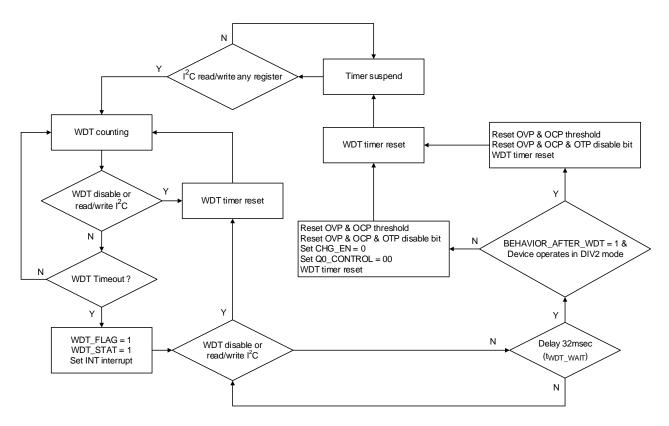



Figure 5. WDT Flow Chart

#### 14.6 Pre-Charge Mechanism

To avoid the inrush current caused by the voltage difference between capacitors and the voltage source, the device establishes a pre-charge mechanism to charge the CFLY capacitors and the COUT capacitor before charging the battery. The device begins to charge the battery if the pre-charge time is timeout and no fault occurs during the pre-charge period. The pre-charge time depends on the setting of registers CFLY\_DIAG\_TIME and VOUT\_ERR\_ON\_TIME. Each pre-charge time and pre-charged capacitors for 4 operation modes are indicated in <a href="Table 9">Table 9</a>. In the case of the DIV2 mode, the pre-charge time is CFLY\_DIAG\_TIME plus VOUT\_ERR\_ON\_TIME, and the CFLY and COUT capacitors are pre-charged at the same time.

RICHTEK is a registered trademark of Richtek Technology Corporation.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

27



| Operation Mode | Pre-charge Time                      | Pre-charged Capacitor |  |
|----------------|--------------------------------------|-----------------------|--|
| Bypass         | VOUT_ERR_ON_TIME                     | COUT                  |  |
| Reverse Bypass | NA                                   | NA                    |  |
| DIV2           | CFLY_DIAG_TIME +<br>VOUT_ERR_ON_TIME | CFLY and COUT         |  |
| Reverse DIV2   | CFLY_DIAG_TIME                       | CFLY                  |  |

#### 14.7 Operation Mode Diagram

The RT9758D includes 4 operation modes, users can control device to enter each mode by related register bits. Figure 6 shows the setting step between each mode. Users need to follow the recommended step to control device. For example, the device can be transferred between bypass mode and DIV2 mode by two operation ways. The first way is using AT\_FUNCTION, and the second way is controlling by register setting. If the user controls device by register, the recommended operation flow is as below: The first step is to set CHG\_EN bit to 0 to make device enter standby mode. The second step is to set OPERATION\_MODE\_SELECTION bit and REVERSE\_MODE\_EN bit, then the last step is to set CHG\_EN bit to 1 to start charging. Based on above description, the OPERATION\_MODE\_SELECTION bit and REVERSE\_MODE\_EN bit can be changed only while the device stays in standby mode or present mode.

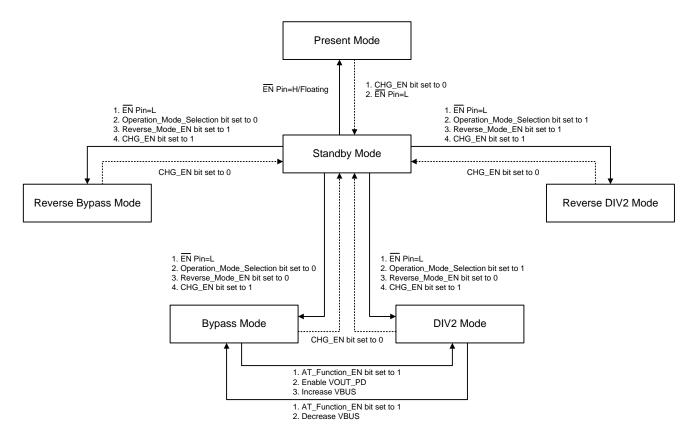



Figure 6. Operation Mode Diagram



#### 14.8 WRX\_OK Function (WRX\_OK)

The RT9758D includes WRX\_OK pin function to inform system. In standby mode and 4 operation mode with default setting, if WRX\_IN voltage is higher than WRX\_INSERT level, WRX\_OK pin will pull high. Users can change status of WRX\_OK pin from high to low while WRX\_INSERT is detected by using OVERRIDE\_WRX\_OK\_PIN\_LOW bit. If OVERRIDE\_WRX\_OK\_PIN\_LOW bit is set to 1, the status of WRX\_OK pin pulls to low while WRX\_INSERT is detected. If the user desires WRX\_OK function to be active in present mode, users can set WRX\_OK\_PSM bit and WRX\_OK\_EN bit both to 1 to activate it. In addition, users can disable WRX\_OK function by WRX\_OK\_EN bit in each mode.

#### 14.9 Q0 MOSFET Control (Q0\_CONTROL)

The RT9758D includes Q0 MOSFET to prevent reverse voltage from VBUS pin. It can be controlled by Q0\_CONTROL bit. If Q0\_CONTROL bit set to 10, Q0 will turn on after 2msec delay time (tQ0\_DELAY) when WRX\_INSERT is detected and without VBUS OVP fault. In 2msec delay time (tQ0\_DELAY), WRX\_IN pull down resistor will be active. If Q0\_CONTROL bit set to 11, Q0 will turn on immediately when VBUS\_INSERT is detected. If users desire to turn off Q0 MOSFET, just set Q0\_CONTROL bit to 00 or 10.

#### 14.10 I<sup>2</sup>C Serial Interface

The RT9758D integrates I<sup>2</sup>C interface for host to program charging parameter and monitor device status. The interface requires a serial clock line (SCL) and a serial data line (SDA). The host should initiate a data transfer on the bus and generates the clock signals to permit that transfer. The device operates with address 50H, 51H or 52H to receive control input from the host. The SCL and SDA pin are open drain structures. Users should connect a supply voltage via a current source or pull-up resistors on SCL and SDA. Figure 7 shows the I<sup>2</sup>C waveform information, the data line must be stable during the high period of SCL line. The high or low state of SDA can change only when SCL line is low.

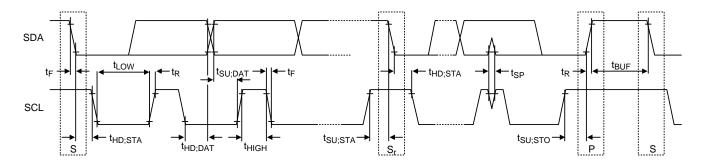



Figure 7. I<sup>2</sup>C Waveform Information

The RT9758D operates as an I<sup>2</sup>C slave device with address 50H, 51H or 52H (depends on voltage condition of ADDR pin). Every byte on SDA line must be 8-bit long. Figure 8 shows the byte format of SDA and SCL line. All of transactions begin with a START pattern and can be terminated with a STOP pattern. After START, the master should send a slave address. The slave address is 7-bit long followed by the eighth bit as a data direction bit (R/W). The direction bit setting to 0 indicates a transmission and 1 indicates a request for data. The master should take an acknowledge bit after every byte. The master should release SDA line during the acknowledge clock pulse so the slave device can pull low the SDA line to signal the master that the byte was successfully received. The RT9758D supports multi read/write and SCL line can be up to 3.4MHz.

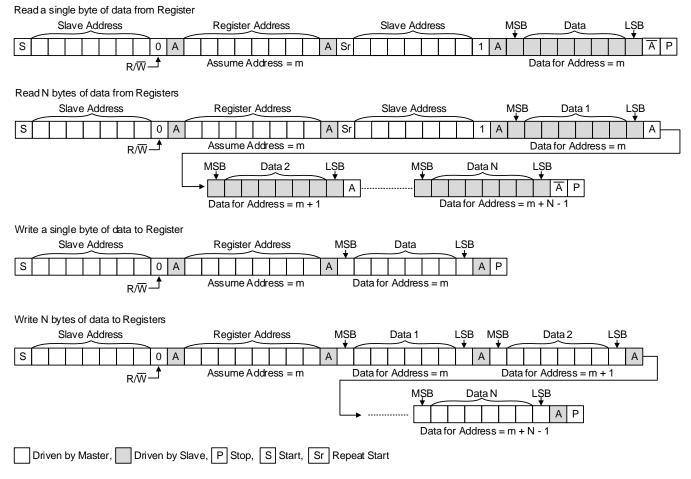



Figure 8. Read and Write Function

#### 14.11 Interrupt (INT), STAT, FLAG, and MASK

The  $\overline{\text{INT}}$  pin is an open drain structure; users should connect a supply voltage via a current source or pull-up resistors on the pin. When the device triggers an event, the  $\overline{\text{INT}}$  pin will pull low for tint\_pull\_low to notify host. The register map shows all state, flag, and control bit of the device.

When the device triggers the event with FLAG, it will send an  $\overline{\text{INT}}$  signal to host and set the FLAG bit to 1. The FLAG bit can be cleared after read. The device will not send another  $\overline{\text{INT}}$  signal until the FLAG is cleared and a new event occurs again. The MASK bit can disable the  $\overline{\text{INT}}$  pin to send a signal to host. The STAT and FLAG bit are still updated even though the MASK bit is set to 1.

The STAT bits show current statue of the device and are updated as the status change. All of STAT bits will not send INT signal to system when the STAT bit is triggered.

#### 14.12 Spread Spectrum

The device integrated spread spectrum function for users to optimize the EMI influence on system design. The device switching frequency is decided by 0x0F[5:3] bit. The spectral density will concentrate on the switching frequency. Users can enable the spread spectrum function by setting 0x0F[6] bit. After the spread spectrum function is enabled, the device will modulate the switching frequency for  $\pm 6\%$  to reduce the spectral density.



#### 14.13 Parallel Application

For higher charging current application, it is available to use two RT9758D in parallel architecture. The advantages of using parallel architecture are reducing cable losses, improving efficiency of charge system and cutting down charging period. The high power solution that uses two RT9758D is shown in <a href="Figure 9">Figure 9</a>. The slave address of RT9758D can be configured by setting ADDR pin while device power up. In order to avoid unstable ripple issue while charging with parallel architecture, the RT9758D is established with synchronization function at SYNC pin. If the RT9758D is configured to master mode (SYNC\_SLAVE\_EN bit = 0) and synchronization function is active (SYNC\_FUNCTION\_ EN bit = 1), the SYNC pin provides synchronization pulses with frequency equal to twice switching frequency and 50% duty cycle. If the RT9758D is configured to slave mode (SYNC\_SLAVE\_EN bit = 1) and synchronization function is active (SYNC\_FUNCTION\_EN bit = 1), the device works only while SYNC pin receives synchronization pulses. For using the synchronization function, the SYNC pins of the two devices should be connected to each other. The configuration mode and synchronization function can be configured by 0x0D[3] bit and 0x0D[2] bit, respectively.

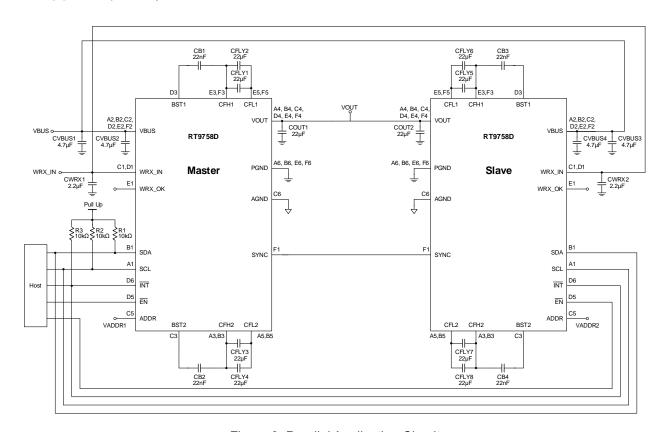



Figure 9. Parallel Application Circuit

In DIV2 mode and reverse DIV2 mode, all of phase angle in the device need to be defined correctly for optimized output ripple and charging efficiency, especially parallel application. Table 10 shows the recommended phase angle in 4 operation modes with different configuration. For example, in DIV2 mode parallel application, the A phase between master and slave device should be shifted 90 degrees, the A and B phase in the same device should be shifted 180 degrees. It is strongly prohibited to change PHASE\_A\_ANGLE bit and PHASE\_B\_ANGLE bit during charging.

If parallel architecture is used, the start-up sequence should be compiled with the rules below. The RT9758D set as slave (RT9758D\_S) should be enabled before host enables the RT9758D set as master (RT9758D\_M) in order to achieve parallel application. The RT9758D\_S will not switch until the SYNC pin receives synchronization pulses

RICHTEK is a registered trademark of Richtek Technology Corporation.



provided by the RT9758D\_M. The communication flow between smart wall adapter, wireless power device and parallel charge system is shown in <u>Figure 10</u>.

Table 10. Phase Angle in 4 Operation Modes with Different Configuration

| Operation Mode      | Configuration | Phase_A_ANGLE | Phase_B_ANGLE |  |
|---------------------|---------------|---------------|---------------|--|
| DIV2 mode           | Standalone    | 0°            | 180°          |  |
| DIV2 mode           | Master        | 0°            | 180°          |  |
| DIV2 mode           | Slave         | 90°           | 270°          |  |
| Reverse DIV2 mode   | Standalone    | 0°            | 180°          |  |
| Reverse DIV2 mode   | Master        | 0°            | 180°          |  |
| Reverse DIV2 mode   | Slave         | 90°           | 270°          |  |
| Bypass mode         | NA            | Don't care    | Don't care    |  |
| Reverse Bypass mode | NA            | Don't care    | Don't care    |  |

<u>Table 11</u> shows the related configuration of 4 operation modes in parallel application. The users must follow the rule before normal operation. For example, the SYNC\_SLAVE\_EN bit set to 0, OPERATION\_MODE\_SELECTION bit set to 1 and REVERSE\_MODE\_EN bit set to 0 in DIV2 mode with master configuration is required. Especially in reverse DIV2 mode with salve configuration, the REVERSE\_MODE\_EN bit should be set to 0 for normal soft-start sequence.

Table 11. Configuration of 4 Operation Modes in Parallel Application (Note 11)

| Mode              | Configuration | SYNC_SLAVE_EN bit | OPERATION_MODE_SELECTION bit | REVERSE_MODE_<br>EN bit |
|-------------------|---------------|-------------------|------------------------------|-------------------------|
| Bypass            | Master        | 0                 | 0                            | 0                       |
|                   | Slave         | 1                 | 0                            | 0                       |
| Reverse<br>Bypass | Master        | 0                 | 0                            | 1                       |
|                   | Slave         | 1                 | 0                            | 1                       |
| DIV2 mode         | Master        | 0                 | 1                            | 0                       |
|                   | Slave         | 1                 | 1                            | 0                       |
| Reverse<br>DIV2   | Master        | 0                 | 1                            | 1                       |
|                   | Slave         | 1                 | 1                            | 0<br>( <u>Note 12</u> ) |

Note 11. In parallel application, SYNC\_FUNCTION\_EN bit must be set to 1.

**Note 12**. In case of reverse DIV2 mode with slave configuration, the REVERSE\_MODE\_EN bit will be forced to 0 when SYNC\_FUNCTION EN bit = 1 and the SYNC pin receives synchronization pulses from master device.



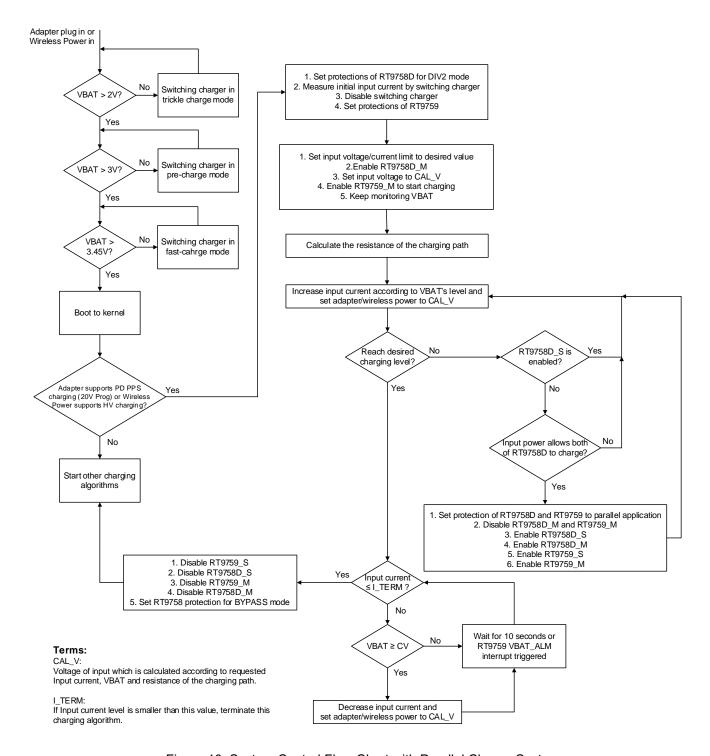



Figure 10. System Control Flow Chart with Parallel Charge System

2024

DS9758D-00 May



#### 14.14 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature TJ(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $PD(MAX) = (TJ(MAX) - TA) / \theta JA$ 

where T<sub>J</sub>(MAX) is the maximum junction temperature, TA is the ambient temperature, and  $\theta$ <sub>JA</sub> is the junction-toambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance,  $\theta_{JA}$ , is highly package dependent. For a WL-CSP-36B 2.74x2.84 (BSC) package, the thermal resistance,  $\theta_{JA}$ , is 34.7°C/W on a standard JEDEC 51-7 high effectivethermal-conductivity four-layer test board. The maximum power dissipation at  $T_A = 25^{\circ}C$  can be calculated as below:

P<sub>D(MAX)</sub> = (125°C - 25°C) / (34.7°C/W) = 2.88W for a WL-CSP-36B 2.74x2.84 (BSC) package.

The maximum power dissipation depends on the operating ambient temperature for the fixed T<sub>J(MAX)</sub> and the thermal resistance, θJA. The derating curve in Figure 11 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

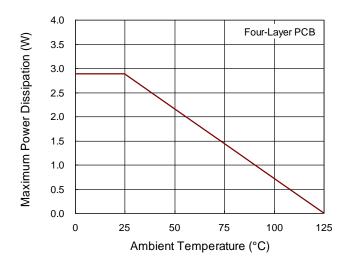



Figure 11. Derating Curve of Maximum Power Dissipation

### 14.15 Layout Considerations

The RT9758D layout guidelines are recommended as below:

- Place low ESR bypass capacitor to GND for the WRX IN/VBUS/VOUT pin. The bypass capacitor needs to be placed as close as possible to the RT9758D.
- The capacitor of BST/CFH should be placed as close as possible to the RT9758D.
- Place flying caps with the RT9758D on same layer. The flying caps should be placed as close as possible to the RT9758D. The path of flying caps should be as small as possible.

The WRX\_IN, VBUS, and VOUT traces should be as wide as possible to accommodate high charge current.



DS9758D-00 May 2024

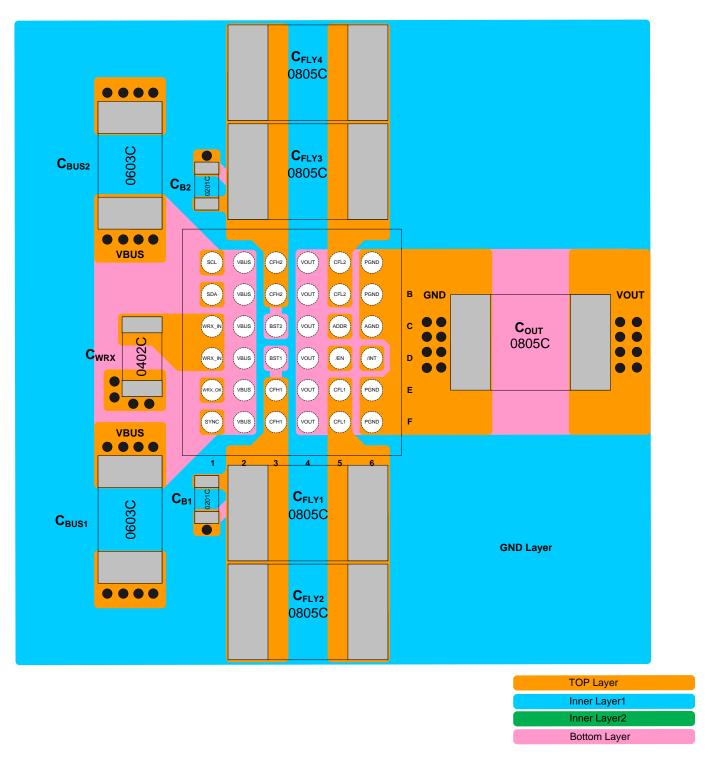



Figure 12. PCB Layout Guide

**Note 13**. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.



# 15 Functional Register Description

#### **Register Map Summary** 15.1

| Function Name              | STAT    | FLAG    | MASK    | Threshold | Enable  | Deglitch  |
|----------------------------|---------|---------|---------|-----------|---------|-----------|
| VOUT_OVP                   | 0x09[6] | 0x02[6] | 0x06[6] | 0x0A[2:0] | 0x12[7] |           |
| VBUS_OVP                   | 0x09[7] | 0x02[7] | 0x06[7] | 0x0B[5:0] | 0x12[6] |           |
| IBUS_OCP                   | 0x09[3] | 0x03[7] | 0x07[7] | 0x0C[7:4] | 0x12[4] |           |
| WRX_IRE_OCP                | 0x09[2] | 0x03[6] | 0x07[6] | 0x0C[3:0] | 0x12[3] |           |
| CON_OCP                    |         | 0x01[7] | 0x05[7] |           |         |           |
| TDIE_OTP                   | 0x09[1] | 0x02[1] | 0x06[1] |           | 0x12[5] |           |
| TDIE_OTP_EXIT              |         | 0x02[2] | 0x06[2] |           |         |           |
| VBUS_LOW_ERR               | 0x08[3] | 0x01[4] | 0x05[4] | -         | -       |           |
| CFLY_DIAG                  |         | 0x01[6] | 0x05[6] |           |         |           |
| VOUT_ERR                   |         | 0x01[3] | 0x05[3] |           |         |           |
| WRX_INSERT                 | 0x08[2] | 0x01[2] | 0x05[2] |           |         |           |
| VBUS_INSERT                | 0x08[0] | 0x01[0] | 0x05[0] |           |         |           |
| VOUT_INSERT                | 0x08[4] | 0x01[5] | 0x05[5] |           |         |           |
| WDT                        | 0x09[0] | 0x02[0] | 0x06[0] | 0x0E[6:4] | 0x0E[3] |           |
| SWITCHING_ENABLED          | 0x08[1] | 0x01[1] | 0x05[1] |           |         |           |
| IN_VALID_RECOVERY_DEGLITCH |         |         |         |           |         | 0x0F[7]   |
| CFLY_DIAG_TIME             |         |         |         |           |         | 0x11[7:6] |
| VOUT_ERR_ON_TIME           |         |         |         |           |         | 0x11[3:2] |
| VOUT_ERR_OFF_TIME          |         |         |         |           |         | 0x11[1]   |
| AT_FUNCTION                |         |         |         | 0x10[2:0] | 0x10[3] |           |
| SINGLE_PHASE_MODE_EN       |         |         |         | 0x0D[5:4] |         |           |
| FSW                        |         |         |         | 0x0F[5:3] |         |           |
| OPERATION_MODE_SELECTION   |         |         |         | 0x0F[0]   |         |           |
| PHASE_A_ANGLE              |         |         |         | 0x10[7:6] |         |           |
| PHASE_B_ANGLE              |         |         |         | 0x10[5:4] |         |           |
| PRECHARGE_CURRENT          |         |         |         | 0x11[5:4] |         |           |
| REG_RST                    |         |         |         | 0x12[2]   |         |           |
| BEHAVIOR_AFTER_WDT         |         |         |         |           | 0x11[0] |           |
| SPREAD_SPECTRUM            |         |         |         |           | 0x0F[6] |           |
| CHG_EN                     |         |         |         |           | 0x0F[2] |           |
| REVERE_MODE_EN             |         |         |         |           | 0x0F[1] |           |
| AUTO_RECOVERY_EN           |         |         |         |           | 0x0E[7] |           |
| OVERRIDE_WRX_OK_PIN_LOW    |         |         |         |           | 0x0E[2] |           |
| WRX_OK_EN                  |         |         |         |           | 0x0E[1] |           |
| WRX_OK_PSM                 |         |         |         |           | 0x0E[0] |           |

**RICHTEK** 

# **RT9758D**

| VBUS_PD_EN       |           | <br> | <br>0x0D[7]   |  |
|------------------|-----------|------|---------------|--|
| WRX_PD_EN        |           | <br> | <br>0x0D[6]   |  |
| VOUT_PD_EN       |           | <br> | <br>0x13[1]   |  |
| SYNC_SLAVE_EN    |           | <br> | <br>0x0D[3]   |  |
| SYNC_FUNCTION_EN |           | <br> | <br>0x0D[2]   |  |
| Q0_CONTROL       |           | <br> | <br>0x0D[1:0] |  |
| IC_STAT          | 0x04[2:0] | <br> | <br>          |  |



#### **Register Description** 15.2

R: Read only

RC: Read and clear RW: Read and write

RWSC: Read and write, also automatically set/clear by particular condition

#### Table 12. DEVICE\_INFO

|         | Address: 0x00 Description: DEVICE_INFO |   |   |   |           |   |   |   |  |  |
|---------|----------------------------------------|---|---|---|-----------|---|---|---|--|--|
| Bit     | 7                                      | 6 | 5 | 4 | 3         | 2 | 1 | 0 |  |  |
| Field   | DEVICE REVISION                        |   |   |   | Device ID |   |   |   |  |  |
| Default | Х                                      | Х | Х | Х | 0         | 0 | 1 | 1 |  |  |
| Туре    |                                        | F | ₹ |   | R         |   |   |   |  |  |

| Bit | Name            | WDT<br>Reset | Reg<br>Reset | Description                 |
|-----|-----------------|--------------|--------------|-----------------------------|
| 7:4 | DEVICE REVISION | N            | N            | Device Revision             |
| 3:0 | Device ID       | N            | N            | Device ID<br>0011 = RT9758D |



### Table 13. FLAG\_1

|         | Address: 0x01 Description: FLAG_1 |                        |                          |                               |                       |                         |                                |                          |  |  |  |
|---------|-----------------------------------|------------------------|--------------------------|-------------------------------|-----------------------|-------------------------|--------------------------------|--------------------------|--|--|--|
| Bit     | 7                                 | 6                      | 5                        | 4                             | 3                     | 2                       | 1                              | 0                        |  |  |  |
| Field   | CON_OCP<br>_FLAG                  | CFLY_<br>DIAG_<br>FLAG | VOUT_<br>INSERT_<br>FLAG | VBUS_<br>LOW_<br>ERR_<br>FLAG | VOUT_<br>ERR_<br>FLAG | WRX_<br>INSERT_<br>FALG | SWITCHING<br>_ENABLED_<br>FLAG | VBUS_<br>INSERT<br>_FLAG |  |  |  |
| Default | 0                                 | 0                      | 0                        | 0                             | 0                     | 0                       | 0                              | 0                        |  |  |  |
| Туре    | RC                                | RC                     | RC                       | RC                            | RC                    | RC                      | RC                             | RC                       |  |  |  |

| Bit | Name                       | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                            |
|-----|----------------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | CON_OCP_<br>FLAG           | N            | N            | Set 1 and send an INT when converter current over than CON_OCP threshold. Clear upon read.  0: Normal  1: CON_OCP has occurred.                        |
| 6   | CFLY_DIAG_<br>FLAG         | Z            | N            | Set 1 and send an INT when CFLY short during converter soft-start in DIV2 or reverse DIV2 mode. Clear upon read.  0: Normal 1: CFLY_DIAG has occurred. |
| 5   | VOUT_<br>INSERT_FLAG       | N            | N            | Set 1 and send an INT when VOUT voltage over than VOUT_INSERT threshold. Clear upon read.  0: Normal  1: VOUT_INSERT has occurred.                     |
| 4   | VBUS_LOW_<br>ERR_FLAG      | N            | N            | Set 1 and send an INT when VBUS voltage lower than VBUS_LOW_ERR threshold. Clear upon read. 0: Normal 1: VBUS_LOW_ERR has occurred.                    |
| 3   | VOUT_ERR_<br>FLAG          | N            | N            | Set 1 and send an INT when VOUT short during converter soft-start in DIV2 mode or bypass mode. Clear upon read.  0: Normal 1: VOUT_ERR has occurred.   |
| 2   | WRX_<br>INSERT_FALG        | N            | N            | Set 1 and send an INT when WRX_IN voltage over than WRX_INSERT threshold. Clear upon read. 0: Normal 1: WRX_INSERT has occurred.                       |
| 1   | SWITCHING_ENABLED_<br>FLAG | N            | N            | Set 1 and send an INT when the converter start working. Clear upon read.  0: Normal  1: Converter start switching.                                     |
| 0   | VBUS_<br>INSERT_FLAG       | N            | Y            | Set 1 and send an INT when VBUS voltage over than VBUS_INSERT threshold. Clear upon read.  0: Normal  1: VBUS_INSERT has occurred.                     |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.



# Table 14. FLAG\_2

|         | Address: 0x02 Description: FLAG_2 |                       |             |          |   |                            |                       |              |  |  |  |
|---------|-----------------------------------|-----------------------|-------------|----------|---|----------------------------|-----------------------|--------------|--|--|--|
| Bit     | 7                                 | 6                     | 5 4 3 2 1 0 |          |   |                            |                       |              |  |  |  |
| Field   | VBUS_<br>OVP_<br>FLAG             | VOUT_<br>OVP_<br>FLAG |             | Reserved |   | TDIE_<br>OTP_<br>EXIT_FLAG | TDIE_<br>OTP_<br>FLAG | WDT_<br>FLAG |  |  |  |
| Default | 0                                 | 0                     | 0           | 0        | 0 | 0                          | 0                     | 0            |  |  |  |
| Туре    | RC                                | RC                    |             | NA       |   | RC                         | RC                    | RC           |  |  |  |

| Bit | Name               | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                                               |
|-----|--------------------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | VBUS_OVP_FLAG      | N            | N            | Set 1 and send an INT when VBUS voltage over than VBUS_OVP threshold. Clear upon read. 0: Normal 1: VBUS_OVP has occurred.                                                |
| 6   | VOUT_OVP_FLAG      | N            | N            | Set 1 and send an INT when VOUT voltage over than VOUT_OVP threshold. Clear upon read. 0: Normal 1: VOUT_OVP has occurred.                                                |
| 5:3 | Reserved           | NA           | NA           | Reserved                                                                                                                                                                  |
| 2   | TDIE_OTP_EXIT_FLAG | Ν            | N            | Set 1 and send an INT when die temperature lower than TDIE_OTP release threshold after TDIE_OTP is triggered. Clear upon read.  0: Normal  1: TDIE_OTP_EXIT has occurred. |
| 1   | TDIE_OTP_FLAG      | N            | N            | Set 1 and send an INT when die temperature over than TDIE threshold. Clear upon read.  0: Normal  1: TDIE_OTP has occurred.                                               |
| 0   | WDT_FLAG           | N            | N            | Set 1 and send an INT when watchdog timeout happen. Clear upon read. 0: Normal 1: WDT has occurred.                                                                       |



### Table 15. FLAG\_3

|         | Address: 0x03<br>Description: FLAG_3 |                      |    |          |   |   |   |   |  |  |
|---------|--------------------------------------|----------------------|----|----------|---|---|---|---|--|--|
| Bit     | 7                                    | 6                    | 5  | 4        | 3 | 2 | 1 | 0 |  |  |
| Field   | IBUS_OCP_<br>FLAG                    | WRX_IRE_<br>OCP_FLAG |    | Reserved |   |   |   |   |  |  |
| Default | 0                                    | 0                    | 0  | 0        | 0 | 0 | 0 | 0 |  |  |
| Туре    | RC                                   | RC                   | NA |          |   |   |   |   |  |  |

| Bit | Name                 | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                           |
|-----|----------------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | IBUS_OCP_<br>FLAG    | N            | N            | Set 1 and send an INT when IBUS current over than IBUS_OCP threshold. Clear upon read. 0: Normal 1: IBUS_OCP has occurred.                            |
| 6   | WRX_IRE_<br>OCP_FLAG | N            | N            | Set 1 and send an INT when current that from VBUS to WRX_IN over than WRX_IRE_OCP threshold. Clear upon read.  0: Normal 1: WRX_IRE_OCP has occurred. |
| 5:0 | Reserved             | NA           | NA           | Reserved                                                                                                                                              |

#### Table 16. IC\_STAT

|         | Address: 0x04 Description: IC_STAT |   |          |         |   |   |   |   |  |  |
|---------|------------------------------------|---|----------|---------|---|---|---|---|--|--|
| Bit     | 7                                  | 6 | 5        | 4       | 3 | 2 | 1 | 0 |  |  |
| Field   |                                    |   | Reserved | IC_STAT |   |   |   |   |  |  |
| Default | 0                                  | 0 | 0        | 0       | 0 | 0 | 0 | 0 |  |  |
| Туре    |                                    |   | NA       |         | R |   |   |   |  |  |

| Bit | Name     | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                                                                                       |
|-----|----------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:3 | Reserved | NA           | NA           | Reserved                                                                                                                                                                                                          |
| 2:0 | IC_STAT  | N            | Y            | Indicate converter operation status 000: Present mode (Default) 001: Standby mode 010: Forward DIV2 mode 011: Forward bypass mode 100: Reverse DIV2 mode 101: Reverse bypass mode 110: Charge Fault 111: Reserved |



# Table 17. MASK\_1

|         | Address: 0x05 Description: MASK_1 |                        |                          |                               |                       |                         |                                |                          |  |  |
|---------|-----------------------------------|------------------------|--------------------------|-------------------------------|-----------------------|-------------------------|--------------------------------|--------------------------|--|--|
| Bit     | 7                                 | 6                      | 5                        | 4                             | 3                     | 2                       | 1                              | 0                        |  |  |
| Field   | CON_OCP<br>_MASK                  | CFLY_<br>DIAG_<br>MASK | VOUT_<br>INSERT_<br>MASK | VBUS_<br>LOW_<br>ERR_<br>MASK | VOUT_<br>ERR_<br>MASK | WRX_<br>INSERT<br>_MASK | SWITCHING<br>_ENABLED_<br>MASK | VBUS_<br>INSERT<br>_MASK |  |  |
| Default | 0                                 | 0                      | 0                        | 0                             | 0                     | 0                       | 0                              | 0                        |  |  |
| Туре    | RW                                | RW                     | RW                       | RW                            | RW                    | RW                      | RW                             | RW                       |  |  |

| Bit | Name                       | WDT<br>Reset | Reg<br>Reset | Description                                                                                                       |
|-----|----------------------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------|
| 7   | CON_OCP_MASK               | N            | Y            | CON_OCP mask. 0: Not mask IRQ of CON_OCP_FLAG (Default) 1: Mask IRQ of CON_OCP_FLAG                               |
| 6   | CFLY_DIAG_MASK             | N            | Y            | CFLY_DIAG mask. 0: Not mask IRQ of CFLY_DIAG_FLAG (Default) 1: Mask IRQ of CFLY_DIAG_FLAG                         |
| 5   | VOUT_INSERT_MASK           | N            | Υ            | VOUT_INSERT mask. 0: Not mask IRQ of VOUT_INSERT_FLAG (Default) 1: Mask IRQ of VOUT_INSERT_FLAG                   |
| 4   | VBUS_LOW_ERR_<br>MASK      | N            | Y            | VBUS_LOW_ERR mask. 0: Not mask IRQ of VBUS_LOW_ERR_FLAG (Default) 1: Mask IRQ of VBUS_LOW_ERR_FLAG                |
| 3   | VOUT_ERR_MASK              | N            | Y            | VOUT_ERR mask. 0: Not mask IRQ of VOUT_ERR_FLAG (Default) 1: Mask IRQ of VOUT_ERR_FLAG                            |
| 2   | WRX_INSERT_MASK            | N            | Y            | WRX_INSERT mask. 0: Not mask IRQ of WRX_INSERT_FLAG (Default) 1: Mask IRQ of WRX_INSERT_FLAG                      |
| 1   | SWITCHING_ENABLED_<br>MASK | N            | Υ            | SWITCHING_ENABLED mask. 0: Not mask IRQ of SWITCHING_ENABLED_FLAG (Default) 1: Mask IRQ of SWITCHING_ENABLED_FLAG |
| 0   | VBUS_INSERT_MASK           | N            | Y            | VBUS_INSERT mask. 0: Not mask IRQ of VBUS_INSERT_FLAG (Default) 1: Mask IRQ of VBUS_INSERT_FLAG                   |



# Table 18. MASK\_2

|         | Address: 0x06 Description: MASK_2 |                       |             |          |  |                            |                       |              |  |  |  |
|---------|-----------------------------------|-----------------------|-------------|----------|--|----------------------------|-----------------------|--------------|--|--|--|
| Bit     | 7                                 | 6                     | 5 4 3 2 1 0 |          |  |                            |                       |              |  |  |  |
| Field   | VBUS_<br>OVP_<br>MASK             | VOUT_<br>OVP_<br>MASK |             | Reserved |  | TDIE_<br>OTP_EXIT<br>_MASK | TDIE_<br>OTP_<br>MASK | WDT_<br>MASK |  |  |  |
| Default | 0                                 | 0                     | 1           | 1 1 1    |  |                            | 0                     | 0            |  |  |  |
| Туре    | RW                                | RW                    |             | NA       |  | RW                         | RW                    | RW           |  |  |  |

| Bit | Name               | WDT<br>Reset | Reg<br>Reset | Description                                                                                           |
|-----|--------------------|--------------|--------------|-------------------------------------------------------------------------------------------------------|
| 7   | VBUS_OVP_MASK      | N            | Υ            | VBUS_OVP mask. 0: Not mask IRQ of VBUS_OVP_FLAG (Default) 1: Mask IRQ of VBUS_OVP_FLAG                |
| 6   | VOUT_OVP_MASK      | N            | Υ            | VOUT_OVP mask. 0: Not mask IRQ of VOUT_OVP_FLAG (Default) 1: Mask IRQ of VOUT_OVP_FLAG                |
| 5:3 | Reserved           | NA           | NA           | Reserved                                                                                              |
| 2   | TDIE_OTP_EXIT_MASK | N            | Υ            | TDIE_OTP_EXIT mask. 0: Not mask IRQ of TDIE_OTP_EXIT_FLAG (Default) 1: Mask IRQ of TDIE_OTP_EXIT_FLAG |
| 1   | TDIE_OTP_MASK      | N            | Υ            | TDIE_OTP mask. 0: Not mask IRQ of TDIE_OTP_FLAG (Default) 1: Mask IRQ of TDIE_OTP_FLAG                |
| 0   | WDT_MASK           | N            | Υ            | Watchdog timeout mask. 0: Not mask IRQ of WDT_FLAG (Default) 1: Mask IRQ of WDT_FLAG                  |

#### Table 19. MASK\_3

|         |                                   |                      |             |   | _ |   |   |   |  |  |
|---------|-----------------------------------|----------------------|-------------|---|---|---|---|---|--|--|
|         | Address: 0x07 Description: MASK_3 |                      |             |   |   |   |   |   |  |  |
| Bit     | 7                                 | 6                    | 5 4 3 2 1 0 |   |   |   |   |   |  |  |
| Field   | IBUS_OCP_<br>MASK                 | WRX_IRE_<br>OCP_MASK | Reserved    |   |   |   |   |   |  |  |
| Default | 0                                 | 0                    | 1           | 1 | 1 | 1 | 1 | 1 |  |  |
| Туре    | RW                                | RW                   | NA          |   |   |   |   |   |  |  |

| Bit | Name             | WDT<br>Reset | Reg<br>Reset | Description                                                                                     |
|-----|------------------|--------------|--------------|-------------------------------------------------------------------------------------------------|
| 7   | IBUS_OCP_MASK    | N            | Υ            | IBUS_OCP mask. 0: Not mask IRQ of IBUS_OCP_FLAG (Default) 1: Mask IRQ of IBUS_OCP_FLAG          |
| 6   | WRX_IRE_OCP_MASK | N            | Υ            | WRX_IRE_OCP mask. 0: Not mask IRQ of WRX_IRE_OCP_FLAG (Default) 1: Mask IRQ of WRX_IRE_OCP_FLAG |
| 5:0 | Reserved         | NA           | NA           | Reserved                                                                                        |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

DS9758D-00 May 2024 www.richtek.com



# Table 20. STAT\_1

|         | Address: 0x08 Description: STAT_1 |   |   |                          |                               |                         |                                |                          |  |  |  |
|---------|-----------------------------------|---|---|--------------------------|-------------------------------|-------------------------|--------------------------------|--------------------------|--|--|--|
| Bit     | 7                                 | 6 | 5 | 4                        | 3                             | 2                       | 1                              | 0                        |  |  |  |
| Field   | Reserved                          |   |   | VOUT_<br>INSERT_<br>STAT | VBUS_<br>LOW_<br>ERR_<br>STAT | WRX_<br>INSERT_<br>STAT | SWITCHING<br>_ENABLED<br>_STAT | VBUS_<br>INSERT_<br>STAT |  |  |  |
| Default | 0                                 | 0 | 0 | 0                        | 0                             | 0                       | 0                              | 0                        |  |  |  |
| Туре    | NA                                |   |   | R                        | R                             | R                       | R                              | R                        |  |  |  |

| Bit | Name                       | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                                                            |
|-----|----------------------------|--------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:5 | Reserved                   | NA           | NA           | Reserved                                                                                                                                                                               |
| 4   | VOUT_INSERT_STAT           | N            | N            | Set 1 when VOUT voltage above the VOUT_INSERT threshold. Persists until condition is no longer valid. 0: Normal 1: VOUT_INSERT is occurring.                                           |
| 3   | VBUS_LOW_ERR_STAT          | N            | N            | Set 1 when VBUS voltage below the VBUS_LOW_ERR threshold. Persists until condition is no longer valid. 0: Normal 1: VBUS_LOW_ERR is occurring.                                         |
| 2   | WRX_INSERT_STAT            | N            | N            | Set 1 when WRX_IN voltage above the WRX_INSERT threshold. Persists until condition is no longer valid. 0: Normal 1: WRX_INSERT is occurring.                                           |
| 1   | SWITCHING_ENABLED_<br>STAT | N            | N            | Set 1 and send an INT when the converter start working. Only one INT is sent when switching starts. Persists until condition is no longer valid.  0: Normal 1: SWITCHING is occurring. |
| 0   | VBUS_INSERT_STAT           | N            | N            | Set 1 when VBUS voltage above the VBUS_INSERT threshold. Persists until condition is no longer valid. 0: Normal 1: VBUS_INSERT is occurring.                                           |



### Table 21. STAT\_2

|         | Address: 0x09 Description: STAT_2 |                       |      |       |                   |                              |                       |              |  |  |  |
|---------|-----------------------------------|-----------------------|------|-------|-------------------|------------------------------|-----------------------|--------------|--|--|--|
| Bit     | 7                                 | 6                     | 5    | 4     | 3                 | 2                            | 1                     | 0            |  |  |  |
| Field   | VBUS_<br>OVP_<br>STAT             | VOUT_<br>OVP_<br>STAT | Rese | erved | IBUS_OCP<br>_STAT | WRX_<br>IRE_<br>OCP_<br>STAT | TDIE_<br>OTP_<br>STAT | WDT_<br>STAT |  |  |  |
| Default | 0                                 | 0                     | 0    | 0     | 0                 | 0                            | 0                     | 0            |  |  |  |
| Туре    | R                                 | R                     | N    | NA    |                   | R                            | R                     | R            |  |  |  |

| Bit | Name             | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                                       |
|-----|------------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | VBUS_OVP_STAT    | N            | N            | Set 1 when VBUS voltage above the VBUS_OVP threshold. Persists until condition is no longer valid. 0: Normal 1: VBUS_OVP is occurring.                            |
| 6   | VOUT_OVP_STAT    | N            | N            | Set 1 when VOUT voltage above the VOUT_OVP threshold. Persists until condition is no longer valid.  0: Normal  1: VOUT_OVP is occurring.                          |
| 5:4 | Reserved         | NA           | NA           | Reserved                                                                                                                                                          |
| 3   | IBUS_OCP_STAT    | N            | N            | Set 1 when IBUS current above the IBUS_OCP threshold. Persists until condition is no longer valid. 0: Normal 1: IBUS_OCP is occurring.                            |
| 2   | WRX_IRE_OCP_STAT | N            | N            | Set 1 when current that from VBUS to WRX_IN above the WRX_IRE_OCP threshold. Persists until condition is no longer valid.  0: Normal 1: WRX_IRE_OCP is occurring. |
| 1   | TDIE_OTP_STAT    | N            | N            | Set 1 when die temperature over than TDIE_OTP threshold. Persists until condition is no longer valid. 0: Normal 1: TDIE_OTP is occurring.                         |
| 0   | WDT_STAT         | N            | N            | 0: WDT is counting. 1: WDT reset will occur after 32ms.                                                                                                           |



### Table 22. CTRL\_1

| Address: 0x0A Description: CTRL_1 |   |          |    |    |   |   |   |   |  |
|-----------------------------------|---|----------|----|----|---|---|---|---|--|
| Bit                               | 7 | 6        | 5  | 4  | 3 | 2 | 1 | 0 |  |
| Field                             |   | VOUT_OVP |    |    |   |   |   |   |  |
| Default                           | 0 | 0        | 0  | 0  | 0 | 1 | 1 | 1 |  |
| Туре                              |   |          | NA | RW |   |   |   |   |  |

| Bit | Name     | WDT<br>Reset | Reg<br>Reset | Description                                                                                                           |
|-----|----------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------|
| 7:3 | Reserved | NA           | NA           | Reserved                                                                                                              |
| 2:0 | VOUT_OVP | Y            | Y            | VOUT overvoltage protection threshold. 000: 7V 001: 8V 010: 9V 011: 10V 100: 11V 101: 12V 110: 13V 111: 14V (Default) |

### Table 23. CTRL\_2

|         | Address: 0x0B Description: CTRL_2 |       |             |          |   |   |   |   |  |  |  |
|---------|-----------------------------------|-------|-------------|----------|---|---|---|---|--|--|--|
| Bit     | 7                                 | 6     | 5 4 3 2 1 0 |          |   |   |   |   |  |  |  |
| Field   | Rese                              | erved |             | VBUS_OVP |   |   |   |   |  |  |  |
| Default | 0                                 | 0     | 1           | 1        | 1 | 0 | 1 | 1 |  |  |  |
| Туре    | N                                 | IA    | RW          |          |   |   |   |   |  |  |  |

| Bit | Name     | WDT<br>Reset | Reg<br>Reset | Description                                                                                                          |
|-----|----------|--------------|--------------|----------------------------------------------------------------------------------------------------------------------|
| 7:6 | Reserved | NA           | NA           | Reserved                                                                                                             |
| 5:0 | VBUS_OVP | Y            | Υ            | VBUS overvoltage protection threshold.  VBUS_OVP = 7.25V + VBUS_OVP[5:0] x LSB  LSB = 250mV  Default = 22V (111011b) |



#### Table 24. CTRL\_3

|         | Address: 0x0C Description: CTRL_3 |                 |      |  |             |   |   |   |  |  |  |
|---------|-----------------------------------|-----------------|------|--|-------------|---|---|---|--|--|--|
| Bit     | 7                                 | 7 6 5 4 3 2 1 0 |      |  |             |   |   |   |  |  |  |
| Field   |                                   | IBUS_           | _OCP |  | WRX_IRE_OCP |   |   |   |  |  |  |
| Default | 0 1 1 0                           |                 |      |  | 0           | 0 | 1 | 0 |  |  |  |
| Туре    | RW                                |                 |      |  |             |   |   |   |  |  |  |

| Bit | Name        | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                                                                                                                      |
|-----|-------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:4 | IBUS_OCP    | Y            | Y            | IBUS overcurrent protection threshold. This current protection is bidirectional.  0000: Reserved  0001: Reserved  0010: 2A  0011: 2.5A  0100: 3A  0101: 3.5A  0110: 4A (Default)  0111: 4.5A  1000: 5A  1001: 5.5A  1010: 6A  1111: 6A  1111: 6A |
| 3:0 | WRX_IRE_OCP | Y            | Y            | WRX reverse overcurrent protection threshold. 0000: 1A 0001: 1.5A 0010: 2A (Default) 0011: 2.5A 0100: 3A 0101: 3.5A 0110: 4A 0111: 4.5A 1000: 5A 1001: 5.5A 1010: 6A 1111: 6A 1111: 6A                                                           |



# Table 25. CTRL\_4

|                     | Address: 0x0D Description: CTRL_4 |               |                              |          |                   |                          |            |   |  |  |  |
|---------------------|-----------------------------------|---------------|------------------------------|----------|-------------------|--------------------------|------------|---|--|--|--|
| Bit 7 6 5 4 3 2 1 0 |                                   |               |                              |          |                   |                          |            |   |  |  |  |
| Field               | VBUS_PD<br>_EN                    | WRX_PD<br>_EN | SINGLE_<br>PHASE_<br>MODE_EN |          | SYNC_<br>SLAVE_EN | SYNC_<br>FUNCTION<br>_EN | Q0_CONTROL |   |  |  |  |
| Default             | 0                                 | 0             | 1 1                          |          | 0                 | 0                        | 1          | 0 |  |  |  |
| Туре                | RW                                | RW            | R                            | RW RW RW |                   |                          |            |   |  |  |  |

| Bit | Name                         | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|------------------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | VBUS_PD_EN                   | N            | Y            | VBUS pull down resistor enable bit. 0: Pull down disable (Default) 1: Pull down enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6   | WRX_PD_EN                    | N            | Y            | WRX_IN pull down resistor enable bit. 0: Pull down disable (Default) 1: Pull down enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5:4 | SINGLE_<br>PHASE_<br>MODE_EN | N            | Y            | Select phase operation mode only in DIV2 or reverse DIV2 mode. It is strongly prohibited during operation. shall be determined before CHG_EN set 1. 00: Both A, B operating in synchronization 01: only Phase A operating 10: only Phase B operating 11: Both A, B operating in synchronization (Default)                                                                                                                                                                                                                                                                                                          |
| 3   | SYNC_SLAVE_EN                | N            | Υ            | This bit is only effective in SYNC_FUNCTION_EN bit = 1. 0: Master (Default) 1: Slave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2   | SYNC_<br>FUNCTION_<br>EN     | N            | Υ            | Enable or disable synchronization function.  0: Disable (Default)  1: Enable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1:0 | Q0_CONTROL                   | Y/N          | Y            | Enable or disable Q0 MOSFET.  If this bit set 10, Q0 turn on function is only valid in following conditions:  WRX_IN voltage over than WRX_INSERT threshold and not exceed VBUS_OVP threshold with the EN pin pull low  If this bit set 11, Q0 turn on function is only valid in following conditions:  VBUS voltage over than VBUS_INSERT threshold with the EN pin pull low.  If the device operates in bypass mode with BEHAVIOR_AFTER_WDT bit is 1, this bit will not be reset by WDT.  00: Disable (Q0 turn off)  01: Disable (Q0 turn off)  10: Enable (Q0 turn on) (default)  11: Enable (Q0 force turn on) |



### Table 26. CTRL\_5

|         | Address: 0x0E Description: CTRL_5 |   |     |   |    |                                 |               |                |  |  |  |
|---------|-----------------------------------|---|-----|---|----|---------------------------------|---------------|----------------|--|--|--|
| Bit     | 7 6 5 4 3 2 1 0                   |   |     |   |    |                                 |               |                |  |  |  |
| Field   | AUTO_<br>RECOVERY<br>_EN          |   | WDT |   |    | OVERRIDE<br>_WRX_OK<br>_PIN_LOW | WRX_OK<br>_EN | WRX_<br>OK_PSM |  |  |  |
| Default | 1                                 | 1 | 0   | 0 | 0  | 0                               | 1             | 0              |  |  |  |
| Туре    | RW                                |   | RW  |   | RW | RW                              | RW            | RW             |  |  |  |

| Bit | Name                        | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|-----|-----------------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 7   | AUTO_RECOVERY_<br>EN        | N            | Y            | Enable or disable auto recovery after OVP status be released. This bit is only effective in bypass mode.  0: Force standby mode  1: Enable AUTO_RECOVERY when the fault condition has been released. (Default)                                                                                                                                         |  |  |  |
| 6:4 | WDT                         | N            | Y            | Watchdog timer setting. 000: 3.75s 001: 7.5s 010: 11.25s 011: 15s 100: 30s (Default) 101: 60s 110: 90s 111: 120s                                                                                                                                                                                                                                       |  |  |  |
| 3   | WDT_EN                      | N            | Y            | Watchdog enable. 0: Disable (Default) 1: Enable                                                                                                                                                                                                                                                                                                        |  |  |  |
| 2   | OVERRIDE_WRX_<br>OK_PIN_LOW | N            | Y            | Enable or disable override function to change status of WRX_OK pin from high to low or from low to high as long as WRX_IN > WRX_INSERT and WRX_OK_EN = 1.  0: Disable (Status of WRX_OK pin changes from low to high once the bit is rest to 0 from 1.) (Default)  1: Enable override (The status of WRX_OK pin is changed from high to low manually.) |  |  |  |
| 1   | WRX_OK_EN                   | N            | Y            | Enable or disable WRX_OK pin function. 0: Disable 1: Enable (Default)                                                                                                                                                                                                                                                                                  |  |  |  |
| 0   | WRX_OK_PSM                  | N            | Y            | Enable or disable WRX_OK pin function in present mode. 0: Disable (Default) 1: Enable                                                                                                                                                                                                                                                                  |  |  |  |



### Table 27. CTRL\_6

|         | Address: 0x0F Description: CTRL_6  |                     |       |     |   |            |                         |                            |  |  |
|---------|------------------------------------|---------------------|-------|-----|---|------------|-------------------------|----------------------------|--|--|
| Bit     | Bit 7 6 5 4 3 2 1 0                |                     |       |     |   |            |                         |                            |  |  |
| Field   | IN_VALID_<br>RECOVERY<br>_DEGLITCH | SPREAD_<br>SPECTRUM |       | FSW |   | CHG_<br>EN | REVERSE<br>_MODE_<br>EN | OPERATION _MODE_ SELECTION |  |  |
| Default | 0                                  | 0                   | 1 0 0 |     | 1 | 0          | 1                       |                            |  |  |
| Туре    | ype RW RW RW RW                    |                     |       |     |   |            |                         |                            |  |  |

| Bit | Name                           | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                                                                                                                                                                                                                                                       |
|-----|--------------------------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | IN_VALID_<br>RECOVERY_DEGLITCH | N            | Υ            | This bit only sets the deglitch time of fault recovery from the OVP event in bypass mode. 0: 21ms (Default) 1: 100ms                                                                                                                                                                                                                                                              |
| 6   | SPREAD_SPECTRUM                | N            | Υ            | Adjust switching frequency for EMI reduction.  0: Normal (Default)  1: Enable spread spectrum                                                                                                                                                                                                                                                                                     |
| 5:3 | FSW                            | N            | Y            | Set switching frequency in DIV2 and reverse DIV2 mode. 000: 300kHz 001: 450kHz 010: 600kHz 011: 900kHz 100: 500kHz (Default) 101: 750kHz 110: 1000kHz 111: 1500kHz                                                                                                                                                                                                                |
| 2   | CHG_EN                         | Y/N          | Y            | Enable converter (default = 1). If this bit is 0, converter in standby mode.  If the device operates in bypass mode with BEHAVIOR_AFTER_WDT bit is 1, this bit will not be reset by WDT.  0: Disable 1: Enable (Default)                                                                                                                                                          |
| 1   | REVERSE_MODE_EN                | N            | Y            | This bit decides converter direction of power delivery. If this set to 1 and OPERATION_MODE_SELECTION set to 1, converter will operate in reverse DIV2 mode. If this set to 1 and OPERATION_MODE_SELECTION set to 0, converter will operate in reverse bypass mode. 0: Converter operate in forward of power delivery (Default) 1: Converter operate in reverse of power delivery |
| 0   | OPERATION_MODE_<br>SELECTION   | N            | Υ            | This bit selects converter operation mode. 0: Bypass mode 1: DIV2 mode (Default)                                                                                                                                                                                                                                                                                                  |



### Table 28. CTRL\_7

|         | Address: 0x10 Description: CTRL_7 |          |         |         |                        |             |   |   |  |  |  |
|---------|-----------------------------------|----------|---------|---------|------------------------|-------------|---|---|--|--|--|
| Bit     | 7                                 | 6        | 5       | 4       | 3                      | 2           | 1 | 0 |  |  |  |
| Field   | PHASE_A                           | \_ANGLE  | PHASE_E | B_ANGLE | AT_<br>FUNCTION<br>_EN | AT_FUNCTION |   |   |  |  |  |
| Default | 0                                 | 0        | 1       | 1 0     |                        | 1           | 0 | 0 |  |  |  |
| Туре    | R'                                | RW RW RW |         |         |                        |             |   |   |  |  |  |

| Bit | Name           | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|----------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 | PHASE_A_ANGLE  | N            | Y            | Select phase A angle in DIV2 or reverse DIV2 mode. It is strongly prohibited during operation. shall be determined before CHG_EN set 1. If the RT9758D operate in single application, recommend this bit set to 00. If the RT9758D operate in parallel application, recommend this bit set to 00 in Master mode. If the RT9758D operate in parallel application, recommend this bit set to 01 in Slave mode. 00: 0 degrees (Default) 01: 90 degrees 10: 180 degrees 11: 270 degrees |
| 5:4 | PHASE_B_ANGLE  | N            | Y            | Select phase B angle in DIV2 or reverse DIV2 mode. It is strongly prohibited during operation. shall be determined before CHG_EN set 1. If the RT9758D operate in single application, recommend this bit set to 10. If the RT9758D operate in parallel application, recommend this bit set to 10 in Master mode. If the RT9758D operate in parallel application, recommend this bit set to 11 in Slave mode. 00: 0 degrees 01: 90 degrees (Default) 11: 270 degrees                 |
| 3   | AT_FUNCTION_EN | N            | Y            | Enable or disable auto transition function that make converter mode change between bypass mode and DIV2 mode automatically.  0: Disable (Default)  1: Enable                                                                                                                                                                                                                                                                                                                        |
| 2:0 | AT_FUNCTION    | N            | Y            | Auto transition function threshold.  000: 9V  001: 9.5V  010: 10V  011: 10.5V  100: 11V (Default)  101: 11.5V  110: 12V  111: 12V                                                                                                                                                                                                                                                                                                                                                   |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.



### Table 29. CTRL\_8

|         | Address: 0x11 Description: CTRL_8 |                                      |     |   |               |              |                               |                                |  |  |  |
|---------|-----------------------------------|--------------------------------------|-----|---|---------------|--------------|-------------------------------|--------------------------------|--|--|--|
| Bit     | 7 6 5 4 3 2                       |                                      |     |   |               |              | 1                             | 0                              |  |  |  |
| Field   | CFLY_DI.                          | CFLY_DIAG_TIME PRECHARGE_<br>CURRENT |     | _ | VOUT_E<br>TII | RR_ON_<br>ME | VOUT_<br>ERR_<br>OFF_<br>TIME | BEHAVI<br>OR_<br>AFTER_<br>WDT |  |  |  |
| Default | 1                                 | 1                                    | 1 1 |   | 1             | 1            | 0                             | 1                              |  |  |  |
| Туре    | RW RW                             |                                      |     |   | R             | W            | RW                            | RW                             |  |  |  |

| Bit | Name                     | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                                                                                                                                                             |
|-----|--------------------------|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:6 | CFLY_DIAG_TIME           | N            | Y            | Program pre-charge timing of CFLY in DIV2 mode or reverse DIV2 mode. In DIV2 mode, pre-charge timing of CFLY is sum of CFLY_DIAG_TIME and VOUT_ERR_ON_TIME. In reverse DIV2 mode, pre-charge timing of CFLY depends on CFLY_DIAG_TIME. 00: 0.5ms 01: 1ms 10: 2ms 11: 4ms (Default)      |
| 5:4 | PRECHARGE_CURRENT        | N            | Y            | Program VOUT or CFLY pre-charge current in soft-start period. 00: Reserved 01: 330mA 10: 500mA 11: 660mA (Default)                                                                                                                                                                      |
| 3:2 | VOUT_ERR_<br>ON_TIME     | Z            | Y            | Program pre-charge timing of VOUT in bypass mode and DIV2 mode. In DIV2 mode, pre-charge timing of VOUT is sum of CFLY_DIAG_TIME and VOUT_ERR_ON_TIME. In bypass mode, pre-charge timing of VOUT depends on VOUT_ERR_ON_TIM. 00: 0.5ms 01: 1ms 10: 2ms 11: 4ms (Default)                |
| 1   | VOUT_ERR_<br>OFF_TIME    | N            | Υ            | Program a turn off timing after VOUT_ERR is triggered in bypass mode. 0: 40ms (Default) 1: 80ms                                                                                                                                                                                         |
| 0   | 0 BEHAVIOR_<br>AFTER_WDT |              | Y            | Select the converter behavior of converter after trigger watchdog timeout event.  0: Converter will enter standby mode and Q0_CONTROL set to 00 after WDT is triggered  1: Only when in bypass mode, the converter will keep the same mode as before, after WDT is triggered. (Default) |

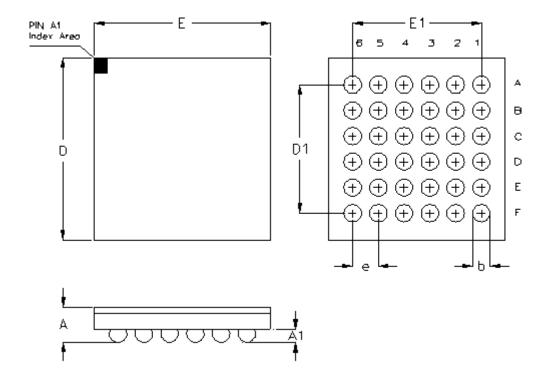


# Table 30. CTRL\_9

|         | Address: 0x12 Description: CTRL_9 |                          |                          |                          |                             |             |      |       |  |  |  |
|---------|-----------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|-------------|------|-------|--|--|--|
| Bit     | 7                                 | 6                        | 5                        | 4                        | 3                           | 2           | 1    | 0     |  |  |  |
| Field   | DISABLE_<br>VOUT_<br>OVP          | DISABLE_<br>VBUS_<br>OVP | DISABLE_<br>TDIE_<br>OTP | DISABLE_<br>IBUS_<br>OCP | DISABLE_<br>WRX_IRE_<br>OCP | REG_<br>RST | Rese | erved |  |  |  |
| Default | 0                                 | 0                        | 0                        | 0                        | 0                           | 0           | 0    | 0     |  |  |  |
| Туре    | RW                                | RW                       | RW                       | RW                       | RW                          | RWSC        | N    | Α     |  |  |  |

| Bit | Name                        | WDT<br>Reset | Reg<br>Reset | Description                                                                                      |
|-----|-----------------------------|--------------|--------------|--------------------------------------------------------------------------------------------------|
| 7   | DISABLE_<br>VOUT_OVP        | Υ            | Υ            | Enable or disable VOUT_OVP function. 0: Enable (Default) 1: Disable                              |
| 6   | DISABLE_<br>VBUS_OVP        | Υ            | Y            | Enable or disable VBUS_OVP function.  0: Enable (Default)  1: Disable                            |
| 5   | DISABLE_<br>TDIE_OTP        | Υ            | Υ            | Enable or disable TDIE_OTP function.  0: Enable (Default)  1: Disable                            |
| 4   | DISABLE_<br>IBUS_OCP        | Υ            | Y            | Enable or disable IBUS_OCP function. 0: Enable (Default) 1: Disable                              |
| 3   | DISABLE_<br>WRX_IRE_<br>OCP | Υ            | Υ            | Enable or disable WRX_IRE_OCP function.  0: Enable (Default)  1: Disable                         |
| 2   | REG_RST                     | N            | Y            | Register reset 0: No action (Default) 1: Reset register (Notice: Back to 0 after register reset) |
| 1:0 | Reserved                    | NA           | NA           | Reserved                                                                                         |




### Table 31. CTRL\_10

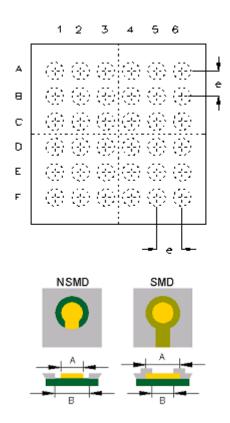
|         | Address: 0x13 Description: CTRL_10 |   |                |          |   |   |   |   |  |  |  |  |
|---------|------------------------------------|---|----------------|----------|---|---|---|---|--|--|--|--|
| Bit     | 7                                  | 6 | 5              | 4        | 3 | 2 | 1 | 0 |  |  |  |  |
| Field   |                                    |   | VOUT_PD_<br>EN | Reserved |   |   |   |   |  |  |  |  |
| Default | 0 0 0 0 0                          |   |                |          | 0 | 0 |   |   |  |  |  |  |
| Туре    |                                    |   | RW             | NA       |   |   |   |   |  |  |  |  |

| Bit | Name       | WDT<br>Reset | Reg<br>Reset | Description                                                                                                                                                                                                                                                                   |
|-----|------------|--------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7:2 | Reserved   | NA           | NA           | Reserved                                                                                                                                                                                                                                                                      |
| 1   | VOUT_PD_EN | N            | Y            | Once VOUT_PD_EN = 1 is set, the Enable state remains valid until the user changes it to 0 (Disable) or changes REG_RST 0x12[2] or the IC is reset even if CHG_EN = 0.  Enable pull-down resistor for discharge VOUT voltage.  0: Not discharge (Default)  1: Enable discharge |
| 0   | Reserved   | NA           | NA           | Reserved                                                                                                                                                                                                                                                                      |



#### 16 Outline Dimension



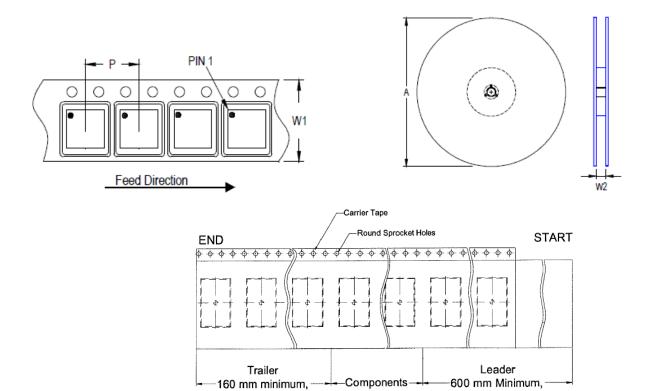

| Cumbal | Dimensions I | n Millimeters | Dimension | s In Inches |  |
|--------|--------------|---------------|-----------|-------------|--|
| Symbol | Min          | Max           | Min       | Max         |  |
| А      | 0.500 0.600  |               | 0.020     | 0.024       |  |
| A1     | 0.170        | 0.230         | 0.007     | 0.009       |  |
| b      | 0.240        | 0.300         | 0.009     | 0.012       |  |
| D      | 2.800        | 2.880         | 0.110     | 0.113       |  |
| D1     | 2.0          | 000           | 0.079     |             |  |
| E      | 2.700        | 2.780         | 0.106     | 0.109       |  |
| E1     | 2.0          | 000           | 0.079     |             |  |
| е      | 0.4          | 100           | 0.016     |             |  |

36B WL-CSP 2.74x2.84 Package (BSC)

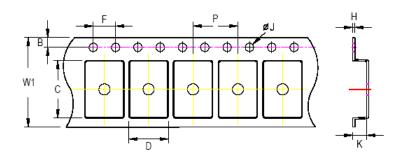
DS9758D-00 May 2024



# 17 Footprint Information




| Dookogo                                | Number of Type |      | Footpri | Tolerance |       |           |
|----------------------------------------|----------------|------|---------|-----------|-------|-----------|
| Package                                | Pin            | Туре | е       | Α         | В     | Tolerance |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | 26             | NSMD | 0.400   | 0.240     | 0.340 | .0.025    |
| WL-CSP2.74x2.84-36(BSC)                | 36             | SMD  |         | 0.270     | 0.240 | ±0.025    |




# 18 Packing Information

#### 18.1 Tape and Reel Data



| Package Type        | Tape Size<br>(W1) (mm) | Pocket Pitch<br>(P) (mm) | Reel Si | ze (A)<br>(in) | Units<br>per Reel | Trailer<br>(mm) | Leader<br>(mm) | Reel Width (W2)<br>Min./Max. (mm) |
|---------------------|------------------------|--------------------------|---------|----------------|-------------------|-----------------|----------------|-----------------------------------|
| WL-CSP<br>2.74x2.84 | 8                      | 4                        | 180     | 7              | 3,000             | 160             | 600            | 8.4/9.9                           |



- C, D, and K are determined by component size.

  The clearance between the components and the cavity is as follows:
- For 8mm carrier tape: 0.5mm max.

| Tape Size | W1    | F     | )     | В      |        | F     |       | Ø٦    |       | Н     |
|-----------|-------|-------|-------|--------|--------|-------|-------|-------|-------|-------|
|           | Max.  | Min.  | Max.  | Min.   | Max.   | Min.  | Max.  | Min.  | Max.  | Max.  |
| 8mm       | 8.3mm | 3.9mm | 4.1mm | 1.65mm | 1.85mm | 3.9mm | 4.1mm | 1.5mm | 1.6mm | 0.6mm |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation.



#### 18.2 **Tape and Reel Packing**

| Step | Photo/Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Step | Photo/Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | RCHEKAL PAR WALL AND THE PARTY OF THE PARTY | 4    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Reel 7"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 12 inner boxes per outer box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2    | NO TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5    | RICHTEK IN THE PROPERTY OF THE |
|      | Packing by Anti-Static Bag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | Outer box Carton A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3    | RICHTEKS OF LAND  A MAN AND AND AND AND AND AND AND AND AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 3 reels per inner box <b>Box A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Container | Reel |          |       | Box   |       | Carton                        |          |      |         |
|-----------|------|----------|-------|-------|-------|-------------------------------|----------|------|---------|
| Package   | Size | Units    | Item  | Reels | Units | Item                          | Boxes    | Unit |         |
| WL-CSP    |      | 7"       | 2.000 | Box A | 3     | 9,000                         | Carton A | 12   | 108,000 |
| 2.74x2.84 | 1    | 7" 3,000 | Box E | 1     | 3,000 | For Combined or Partial Reel. |          |      |         |



#### 18.3 **Packing Material Anti-ESD Property**

| Surface<br>Resistance     | Aluminum Bag                        | Reel                                | Cover tape                          | Carrier tape                        | Tube                                | Protection Band                     |
|---------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| $\Omega$ /cm <sup>2</sup> | 10 <sup>4</sup> to 10 <sup>11</sup> |

## **Richtek Technology Corporation**

14F, No. 8, Tai Yuen 1<sup>st</sup> Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK is a registered trademark of Richtek Technology Corporation.

**RT9758D** 



19 Datasheet Revision History

| Version | Date     | Description | Item                      |
|---------|----------|-------------|---------------------------|
| 00      | 2024/5/3 | Final       | Marking Information on P1 |