RICHTEK®

5V Capable Low-Voltage DPDT Analog Switch

General Description

RT9737 is a 5V high quality low-voltage double-pole double-throw (DPDT) analog switch. RT9737 supply voltage is designed to operate from 2.5V to 5.5V. Supply voltage can be smaller than input voltage while keeping 5V input range. With $70m\Omega$ turn-on resistance, power-loss and signal distortion can be minimized. RT9737 is ideal for switching audio signal from outputs of audio amplifiers. The break-before-make feature prevents signal distortion during the transferring of a signal from one path to another for audio applications.

Ordering Information

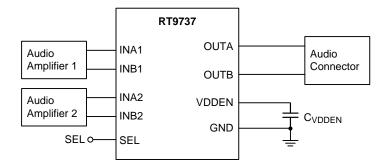
RT9737

Package Type WSC : WL-CSP-9B 1.24x1.24 (BSC)

Note :

Richtek products are :

- ► RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb-free soldering processes


Marking Information

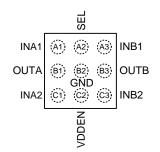
1P : Product Code

W : Date Code

Simplified Application Circuit

Copyright © 2014 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

Features

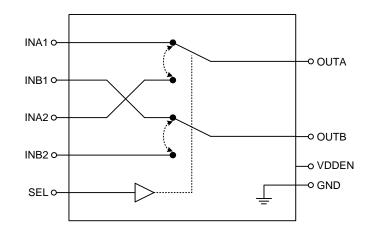

- Maximum Input Signal Range 0 to 5.5V
- $70m\Omega$ Turn-On Resistance
- 2.5V to 5.5V Supply Voltage
- 40µA Quiescent Current
- Break-Before-Make Between Channel Transition
- Available in 9Ball WL-CSP Package

Applications

- Smartphone
- Tablet

Pin Configurations

(TOP VIEW)


WL-CSP-9B 1.24x1.24 (BSC)

Functional Pin Description

Pin No.	Pin Name	Pin Function
A1	INA1	Input 1 of Channel A.
A2	SEL	Selection for Input 1or 2.
A3	INB1	Input 1 of Channel B.
B1	OUTA	Output of Channel A.
B2	GND	Ground.
B3	OUTB	Output of Channel B.
C1	INA2	Input 2 of Channel A.
C2	VDDEN	Supply Voltage.
C3	INB2	Input 2 of Channel B.

Function Block Diagram

Operation

The switches are fully specified to operate from a single 2.5V to 5.5V power supply. RT9737 via internal design, be able to handle when the input signal is greater than the supply voltage range and don't cause the signal distortion. RT9737 control the switches with a control pin, SEL. When SEL voltage under low level, internal switch is thrown to position 1. Audio signal are

via INA1 and INB1 to IC OUTA and OUTB. And then OUTA, OUTB output to the load and Audio connector. When SEL voltage above high level, internal switch is thrown to position 2. When the supply voltage VDDEN under operation range, the switches impedance are risen and all analog signal ports can keep out signals from 0V to 5.5V.

RICHTEK

Absolute Maximum Ratings (Note 1)

• VDDEN, INA1, INA2, INB1, INB2, OUTA, OUTB, SEL	–0.3 to 6V
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
WL-CSP-9B 1.24x1.24 (BSC)	1.28W
Package Thermal Resistance (Note 2)	
WL-CSP-9B 1.24x1.24 (BSC), θ _{JA}	78.1°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	$-65^{\circ}C$ to $150^{\circ}C$
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	2kV
MM (Machine Model)	200V

Recommended Operating Conditions (Note 4)

Supply Input Voltage, VDDEN	2.5V to 5.5V
Junction Temperature Range	$-40^{\circ}C$ to $125^{\circ}C$
Ambient Temperature Range	–40°C to 85°C

Electrical Characteristics

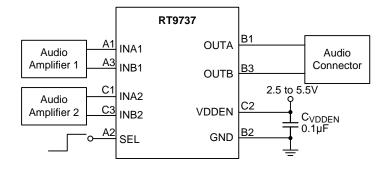
(V_{DDEN} = 2.5V, C_{VDDEN} = 0.1μ F, T_A= 25°C, for each LDO unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Power Supply							
Power Supply Range	V _{DDEN}		2.5		5.5	V	
Power Supply Rejection Ratio	PSRR	Vp-p = 200mV, f = 20kHz, $R_L = 32\Omega$ (Note 5)		80		dB	
Quiescent Current	lq	VDDEN = 2.5V to 5.5V		40	60	μΑ	
Analog Switch							
Input Signal Range			0		5.5	V	
Turn On Bogistones	D	VDDEN = 2.5V, OUT = 0V, I _{OUT} =100mA		90	125	mΩ	
Turn-On Resistance	R _{DS(ON)}	VDDEN = 3.6V, OUT = 0V, I _{OUT} = 100mA		70	100	mΩ	
Off State Leakage Current		INA, INB, OUTA, OUTB, VDDEN = 5.5V		1.2	1.5	μΑ	
Off-State Leakage Current		INA, INB, OUTA, OUTB = 5.5V, VDDEN = 0V		0.12	0.2	μΑ	
Turn-On Time	t _{ON}	INA, INB = 0V		5	10	ms	
Turn-Off Time	t _{OFF}	INA, INB = 0V (Note 5)			100	μS	
Break-Before-Make Time	t _{BBM}	INA, INB = 0V		5	10	ms	
Off-Isolation (Note 5)		VDDEN = 0V, $R_L = 50\Omega$, INA/INB = 0.5Vpp, 20kHz		-50		dB	
Crosstalk (Note 5)	talk (Note 5) $R_L = 50\Omega$, INA/INB = 0.5Vpp, 20kHz		-	-80		dB	
THD+N (Note 5)		R_L = 50 $\Omega,~INA/INB$ = 0.5Vpp, 1kHz, DC bias = 0.25V		0.001		%	
-3dB Bandwidth (Note 5)	Bandwidth (Note 5) $R_L = 50\Omega$			2		MHz	
INA/INB Capacitance	VINB Capacitance INA /INB = 0.5V _{P-P} , f = 1MHz (Note 5)			70		pF	
OUTA/OUTB Capacitance		$INA / INB = 0.5V_{P-P}$, f = 1MHz (Note 5)		120		pF	

RICHTEK

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Digital I/O						
Input Logic-Hi Threshold	VIH		1.4			V
Input Logic-Low Threshold	VIL				0.4	V
Input Leakage Current		SEL = 0V or VDDEN	-0.1		0.1	μΑ

Note 1. Stresses beyond those listed "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.


Note 2. θ_{JA} is measured at $T_A = 25^{\circ}$ C on a high effective thermal conductivity four-layer test board per JEDEC 51-7.

Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Note 4. The device is not guaranteed to function outside its operating conditions.

Note 5. Guarantee by design.

Typical Application Circuit

Copyright © 2014 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation
WWW.richtek.com
DS9737-00 February 2014

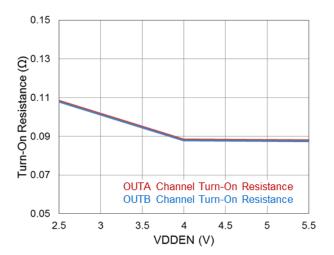
RICHTEK

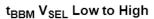
Quiescent Current (uA)

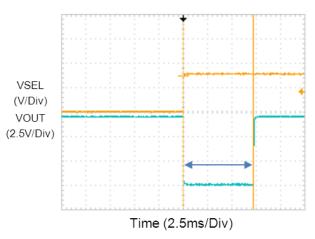
36

28

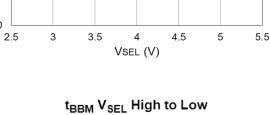
20

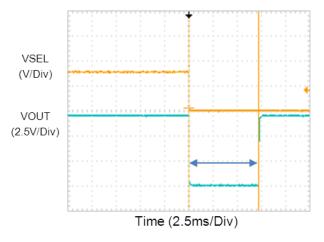

Typical Operating Characteristics

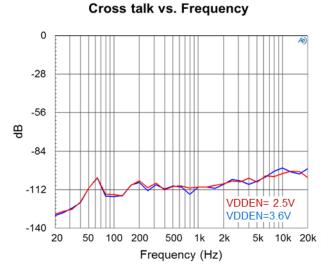

Quiescent Current vs. VDDEN


2.5 3 3.5 4 4.5 5 VDDEN (V)

5.5


Turn-On Resistance vs. VDDEN





SEL Leakage Current vs. VSEL

5

RT9737

RICHTEK

Application Information

RT9737 is a 5V high quality low-voltage double-pole double-throw (DPDT) analog switch. RT9737 supply voltage is designed to operate from 2.5 to 5.5V. Supply voltage can be smaller than input voltage while keeping 5V input range. With 70m Ω turn-on resistance, powerloss and signal distortion can be minimized. RT9737 is ideal for switching audio signal from outputs of audio amplifiers. The break-before-make feature prevents signal distortion during the transferring of a signal from one path to another for audio applications.

Analog Input

RT9737 internal topology design for input and output voltage level can greater than supply voltage.

Low turn-on resistance and excellent channel to channel matching are ideal for audio applications.

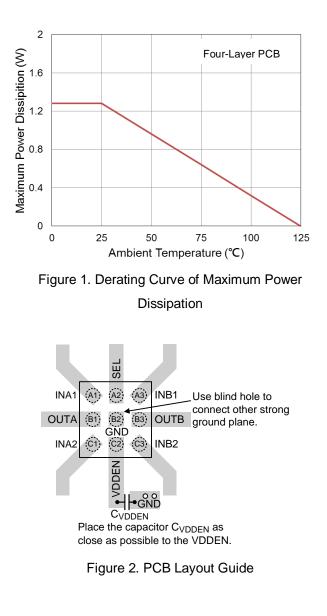
Switch Logic Control

RT9737 can use SEL pin to control internal switches position for another audio source application. SEL pin input current is very low.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

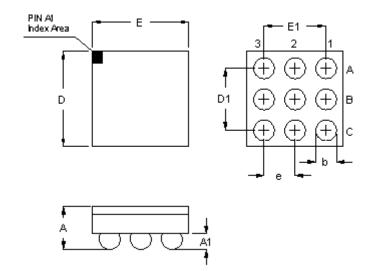
$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) \ / \ \theta_{\mathsf{JA}}$


where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is 125° C. The junction to ambient thermal resistance, θ_{JA} , is layout dependent. For WL-CSP-9B 1.24x1.24 (BSC) packages, the thermal resistance, θ_{JA} , is 78.1°C/W on

a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $T_A = 25^{\circ}C$ can be calculated by the following formula :

 $\label{eq:PDMAX} \begin{array}{l} {\sf P}_{D(MAX)} \ = \ (125^{\circ}C \ - \ 25^{\circ}C) \ / \ (78.1^{\circ}C/W) \ = \ 1.28W \ for \\ {\sf WL-CSP-9B} \ 1.24x1.24 \ (BSC) \ package \end{array}$


The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in Figure 1 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Outline Dimension

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
A	0.500	0.600	0.020	0.024	
A1	0.170	0.230	0.007	0.009	
b	0.240	0.300	0.009	0.012	
D	1.190	1.290	0.047	0.051	
D1	0.800		0.0)31	
E	1.190	1.290	0.047	0.051	
E1	0.800		0.0)31	
е	0.4	100	0.0	016	

WL-CSP-9B 1.24x1.24 (BSC) Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2014 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation