

RT9728A

Sample & Buy

120m Ω , 1.3A Power Switch with Programmable Current Limit

1 General Description

The RT9728A is a cost-effective, low-voltage, single P-MOSFET high-side power switch IC for USB applications with a programmable current limit feature. This IC features a low switch-on resistance (typically 120m Ω) and a low supply current (typically 120 μ A). The RT9728A offers a programmable current-limit threshold ranging from 75mA to 1.3A (typical) via an external resistor, With a ±10% current limit accuracy across all current limit settings. In addition, a flag output is available to indicate fault conditions to the local USB controller. Furthermore, the IC also integrates an embedded delay function to prevent misoperation due to high inrush current. The RT9728A is an ideal solution for USB power supply and can support flexible applications since it is functional for various current limit requirements. It is available in SOT-23-6 and WDFN-6L 2x2 packages. The recommended junction temperature range is -40°C to 125°C, and the ambient temperature range is -40°C to 85°C.

2 Features

- ±10% Current Limit Accuracy @ 1.3A
- Adjustable Current Limit: 75mA to 1.3A (Typical)
- Meet USB Current Limiting Requirements
- Operating Voltage Range: 2.5V to 5.5V
- Reverse Input-Output Voltage Protection
- Built-In Soft-Start
- 120m Ω High-Side MOSFET
- 120µA Supply Current
- 15kV ESD Protection per IEC 61000-4-2 (With External Capacitance)
- Nemko Approved IEC62368-1
- UL Approved-E219878 (

3 Applications

- USB Bus/Self-Powered Hubs
- USB Peripheral Ports
- ACPI Power Distribution
- Battery-Powered Equipment
- 3G/3.5G Data Cards and Set-Top Boxes

4 Simplified Application Circuit

5 Ordering Information

RT9728А 📮 📮

Package Type ⁽¹⁾ E: SOT-23-6 QW: WDFN-6L 2x2
Lead Plating System G: Richtek Green Policy Compliant ⁽²⁾ Z: ECO (Ecological Element with Halogen Free and Pb free) (for WDFN-6L 2x2 Only)
———H: Chip Enable High L: Chip Enable Low

Note 1.

- Marked with ⁽¹⁾ indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.
- Marked with ⁽²⁾ indicated: Richtek products are Richtek Green Policy compliant.

6 Marking Information

RT9728AHGE

01=DNN

RT9728AHGQW

17W

01= : Product Code DNN : Date Code

RT9728ALGE

02= : Product Code DNN : Date Code

RT9728ALGQW

19 : Product Code W : Date Code

RT9728ALZQW

19 : Product Code W : Date Code

RT9728AHZQW

17 : Product Code W : Date Code

17 : Product Code

W : Date Code

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

Table of Contents

1	Gener	al Description	1						
2	Featu	res	1						
3	Applic	ations	1						
4	Simpl	ified Application Circuit	1						
5	Order	ing Information	2						
6	Marki	ng Information	2						
7	Pin Configuration4								
8	Funct	ional Pin Description	4						
9	Funct	ional Block Diagram	5						
10	Absol	ute Maximum Ratings	6						
11	ESD F	atings	6						
12	Recor	nmended Operating Conditions	6						
13	Electr	ical Characteristics	7						
14	Туріса	al Application Circuit	8						
15	Туріса	al Operating Characteristics	9						
16	Opera	tion	12						
17	Applic	ation Information	13						
	17.1	Current Limiting and Short-Circuit							
		Protection	13						
	17.2	Fault Flag	14						
	17.3	Supply Filter/Bypass Capacitor:	14						
	17.4	Output Filter Capacitor	14						
	17.5	Chip Enable Input	15						
	17.6	Undervoltage-Lockout	15						
	17.7	Thermal Considerations	15						

Outlir	ne Dimension	17
18.1	SOT-23-6 Package	17
18.2	WDFN-6L 2x2 Package	18
Footp	rint Information	19
19.1	SOT-23-6 Package	19
19.2	WDFN-6L 2x2 Package	20
Packi	ng Information	21
20.1	Tape and Reel Data	21
20.2	Tape and Reel Packing	23
20.3	Packing Material Anti-ESD Property	25
Datas	heet Revision History	26
	Outlir 18.1 18.2 Footp 19.1 19.2 Packi 20.1 20.2 20.3 Datas	Outline Dimension 18.1 SOT-23-6 Package 18.2 WDFN-6L 2x2 Package Footprint Information 19.1 SOT-23-6 Package 19.2 WDFN-6L 2x2 Package Packing Information 20.1 Tape and Reel Data 20.2 Tape and Reel Packing 20.3 Packing Material Anti-ESD Property Datasheet Revision History

7 Pin Configuration

(TOP VIEW)

WDFN-6L 2x2

8 Functional Pin Description

Pin No.		Pin	Din Eurotian		
SOT-23-6	WDFN-6L 2x2	Name	Pin Function		
1	6	VIN	Power input. The input voltage range is from 2.5V to 5.5V. Connect a suitable input capacitor between this pin and GND; typically, a $10\mu F$ capacitor is used.		
2	5, 7 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.		
3	4	EN/EN	Enable Control Pin with Internal Pull-Up Current Source (EN): Leaving the pin floating or applying a logic-high voltage (≥ 1.1V, typical) will enable the converter. Applying a logic-low voltage will force the device into shutdown mode. Connecting the EN pin to ground will force the converter into shutdown state, which is particularly relevant for cases where the enable pin is marked as /EN (active-low).		
4	3	FAULT	Active-Low Open-Drain Output: This output is asserted during overcurrent, over-temperature, or reverse-voltage conditions. It is recommended to connect a $100k\Omega$ resistor to VIN.		
5	2	ILIM	Current limit set pin. An external resistor sets the current-limit threshold, with a recommended range of $19.1k\Omega$ to $232k\Omega$.		
6	1	VOUT	Power switch output pins. A ceramic capacitor of 10μ F is required for stability. The output capacitor should be placed as close to the device as possible, and the impedance between the VOUT pin and the load should be minimized.		

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. www.richtek.com

9 Functional Block Diagram

5

RT9728A

10 Absolute Maximum Ratings

(<u>Note 2</u>)

Supply Input Voltage	–0.3V to 6V
Other Pin Voltage	–0.3V to 6V
Power Dissipation, PD @ $T_A = 25^{\circ}C$	
SOT-23-6	0.4W
WDFN-6L 2x2	0.606W
Package Thermal Resistance (Note 3)	
SOT-23-6, θJA	250°C/W
WDFN-6L 2x2, 0JA	165°C/W
WDFN-6L 2x2, 0JC	7°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C

- **Note 2.** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- **Note 3.** θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the bottom of the package.

11 ESD Ratings

(<u>Note 4</u>)

HBM (Human Body Model) ------2kV

Note 4. Devices are ESD sensitive. Handling precautions are recommended.

12 Recommended Operating Conditions

(<u>Note 5</u>)

•	Supply Input Voltage, VIN	2.5V to 5.5V
•	Junction Temperature Range	$-40^{\circ}C$ to $125^{\circ}C$
•	Ambient Temperature Range	–40°C to 85°C

Note 5. The device is not guaranteed to function outside its operating conditions.

13 Electrical Characteristics

(V_{IN} = 3.6V, 19.1 k\Omega \le R_{ILIM} \le 232 k\Omega, T_A = T_J = 25°C, unless otherwise noted.)

Parameter	Symbol	Test Conditions			Тур	Max	Unit
EN Input Voltage Rising Threshold	V _{EN_R}			1.1			V
EN Input Voltage Falling Threshold	Ven_f					0.66	V
Current-limit threshold Resistor Range	RILIM	(nominal 1%) fron	n ILIM to GND	19.1		232	kΩ
Undervoltage-Lockout Rising Threshold	VUVLO_R				2.3		V
Undervoltage-Lockout Falling Threshold	Vuvlo_f				2.1		V
Shutdown Current	I _{SHDN}	V _{IN} = 5.5V, no loa = 0V	ad on V _{OUT} , V _{EN}		1	3	μA
Quieccent Current		VIN = 5.5V,	$R_{ILIM} = 20k\Omega$		120	170	
Quescent Current	IQ	no load on Vout	$R_{ILIM} = 210 k\Omega$		120	170	μΑ
Reverse Leakage Current	I _{REV}	$V_{OUT} = 5.5V, V_{IN}$	= 0V		1	3	μA
Static Drain-Source On-State Resistance	R _{DS}	I _{SW} = 0.2A			120		mΩ
	ILIM	$R_{ILIM} = 20k\Omega$		1190	1295	1400	mA
		R _{ILIM} = 49.9kΩ		468	520	572	
		$R_{ILIM} = 210 k\Omega$		110	130	150	
		ILIM shorted to VIN		50	75	100	
Reverse Voltage Comparator Trip Point (V _{OUT} – V _{IN})					135		mV
FAULT Output Low Voltage	V _{OL}	FAULT = 1mA			180		mV
FAULT Off State Leakage		VFAULT = 5.5V			1		μA
		FAULT assertion or de-assertion due to overcurrent condition		5	7.5	10	
FAULI Deglitch		FAULT assertion due to reverse vo	2	4	6	ms	
FAULT Flag Assertion Offset	VFAULT_OFS	Offset between fa level versus ILIM (<u>Note 6</u>)	-100		0	mA	
Over-Temperature Protection Threshold	Тотр	(<u>Note 6</u>)			160		°C

Note 6. Guarantee by design.

14 Typical Application Circuit

Current Limit vs. Temperature

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.
DS9728A-12 November 2024 www.richtek.com

RICHTEK

RICHTEK is a

11

16 Operation

The RT9728A is a current-limited power switch that employs a P-MOSFET for applications prone to short circuits or heavy capacitive loads. Users can adjust the current-limit threshold from 75mA to 1.3A (typical) using an external resistor. Additional shutdown features of the device include over-temperature protection and reverse-voltage protection.

The RT9728A provides a built-in soft-start function to control the gate voltage of the power switch gradually. This driver possesses advanced circuitry designed to regulate the rise and fall times of the output voltage, thereby limiting large inrush currents and voltage spikes. The RT9728A enters a constant-current mode whenever the load exceeds the preset current-limit threshold.

17 Application Information

(<u>Note 7</u>)

The RT9728A is a single P-MOSFET high-side power switch featuring an active-high/low enable input, optimized for self-powered and bus-powered Universal Serial Bus (USB) applications. The switch's low RDS(ON) meets USB voltage drop requirements, and a flag output is provided to signal fault conditions to the local USB controller.

17.1 Current Limiting and Short-Circuit Protection

When a heavy load or short-circuit situation occurs while the switch is enabled, a large transient current may flow through the device. The RT9728A includes current-limit circuitry to prevent these large currents from damaging the MOSFET switch and the hub downstream ports. The RT9728A provides an adjustable current-limit threshold between 120mA and 1.3A (typical) via an external resistor, RILIM, ranging from 19.1k Ω to 232k Ω . However, if the ILIM pin is connected to VIN, the current-limit threshold will be 75mA (typical). The maximum –100mA fault flag assertion offset needs caution, especially for very low ILIM applications. For example, with ILIM = 250mA, the minimum fault flag assertion level might be 150mA (40% error versus its target). For the condition where ILIM is shorted to VIN (75mA), the fault flag may go low. Once the current-limit threshold is exceeded, the device enters constant-current mode until either over-temperature protection occurs or the fault is removed. Table 1 shows a recommended current limit value vs. RILIM resistor.

Figure 1. Current-Limit Threshold vs RILIM

Table 1. Recommended RILIM Resistor Selections **Desired Nominal** Actual Limits (Include R Tolerance) **Ideal Resistor** Closet 1% **Current Limit Resistor (k** Ω) **(k**Ω) IOS Min (mA) IOS Nom (mA) IOS Max (mA) (mA) ILIM is shorted to VIN 50.0 75.0 100.0 75 120 226.1 226.0 101.3 120.0 142.1 200 134.0 133.0 173.7 201.5 233.9 299.4 300 88.5 88.7 262.1 342.3 400 65.9 66.5 351.1 396.7 448.7 500 52.5 52.3 443.9 501.6 562.4 43.5 600 43.2 535.1 604.6 674.1 700 37.2 37.4 616.0 696.0 776.0 800 32.4 32.4 708.7 800.8 892.9 900 28.7 28.7 797.8 901.5 1005.2 1000 25.8 26.1 875.4 989.1 1102.8 1100 23.4 23.2 982.1 1109.7 1237.3 1200 21.4 21.5 1057.9 1195.4 1332.9 1300 19.7 19.6 1178.0 1308.5 1439.0

RICHTEK

17.2 Fault Flag

The RT9728A provides a FAULT signal pin, which is an N-channel open-drain MOSFET output. This open-drain output goes low when the current exceeds the current-limit threshold, VOUT – VIN exceeds the reverse voltage trip level, or the die temperature exceeds approximately 160°C. The FAULT output is capable of sinking a 1mA load to typically 180mV above ground. The FAULT pin requires a pull-up resistor; this resistor should be large in value to reduce energy drain. A 100k Ω pull-up resistor works well for most applications. In the case of an overcurrent condition, FAULT will be asserted only after the flag response delay time, t_D, has elapsed. This ensures that FAULT is asserted upon valid overcurrent conditions and that erroneous error reporting is eliminated. For example, false overcurrent conditions may occur during hot-plug events when extremely large capacitive loads are connected, which induces a high transient inrush current that exceeds the current-limit threshold. The FAULT response delay time, t_D, is typically 7.5ms.

17.3 Supply Filter/Bypass Capacitor:

A 10μ F low ESR ceramic capacitor connected from VIN to GND and located close to the device is strongly recommended to prevent input voltage drooping during hot plug events. However, higher capacitor values may be used to further reduce the voltage droop on the input. Without this bypass capacitor, an output short may cause sufficient ringing on the input (from source lead inductance) to destroy the internal control circuitry. Note that the input transient voltage must never exceed 6V as stated in the Absolute Maximum Ratings.

17.4 Output Filter Capacitor

Standard bypass methods should be used to minimize inductance and resistance between the bypass capacitor and the downstream connector to reduce EMI and decouple voltage droop caused by hot-insertion transients in downstream cables. Ferrite beads in series with VBUS, the ground line, and the bypass capacitors at the power connector pins are recommended for EMI and ESD protection. The bypass capacitor itself should have a low

dissipation factor to allow decoupling at higher frequencies. For commercial applications where the ambient temperature is 0°C to 70°C (such as a PC or USB hub), the RT9728A supports an output capacitor range of up to 120 μ F. For industrial applications with an ambient temperature of -40°C to 125°C, limit the output capacitance to less than 50 μ F to ensure normal startup.

17.5 Chip Enable Input

The RT9728A will be disabled when the EN/EN pin is in a logic-low or logic-high condition. During this condition, the internal circuitry and MOSFET are turned off, reducing the supply current to 1μ A (typical). Floating the input may cause unpredictable operation, and the EN/EN should not be allowed to go negative with respect to GND. The EN/EN signal must be asserted after the input voltage is ready or higher than the UVLO threshold to satisfy the power sequence.

17.6 Undervoltage-Lockout

The undervoltage-lockout (UVLO) feature prevents the MOSFET switch from turning on until the input voltage exceeds approximately 2.3V (typical). If the input voltage drops below approximately 2.1V (typical), the UVLO circuit will turn off the MOSFET switch.

17.7 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_{J(MAX)}, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

 $\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-toambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For SOT-23-6 packages, the thermal resistance, θ_{JA} , is 250°C/W on a standard JEDEC 51-3 single-layer thermal test board. For WDFN-6L 2x2 packages, the thermal resistance, θ_{JA} , is 165°C/W on a standard JEDEC 51-3 single-layer thermal test board thermal test board. The maximum power dissipation at TA = 25°C can be calculated as follows:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (250^{\circ}C/W) = 0.400W$ for a SOT-23-6 package.

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (165^{\circ}C/W) = 0.606W$ for a WDFN-6L 2x2 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in <u>Figure 2</u> allow the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 2. Derating Curves of Maximum Power Dissipation

Note 7. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

18 Outline Dimension

18.1 SOT-23-6 Package

Cumhal	Dimensions	In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.889	1.295	0.031	0.051		
A1	0.000	0.152	0.000	0.006		
В	1.397	1.803	0.055	0.071		
b	0.250	0.560	0.010	0.022		
С	2.591	2.997	0.102	0.118		
D	2.692	3.099	0.106	0.122		
е	0.838	1.041	0.033	0.041		
Н	0.080	0.254	0.003	0.010		
L	0.300	0.610	0.012	0.024		

SOT-23-6 Surface Mount Package

18.2 WDFN-6L 2x2 Package

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions I	In Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.175	0.250	0.007	0.010		
b	0.200	0.350	0.008	0.014		
D	1.950	2.050	0.077	0.081		
D2	1.000	1.450	0.039	0.057		
E	1.950	2.050	0.077	0.081		
E2	0.500	0.850	0.020	0.033		
е	0.6	50	0.026			
L	0.300	0.400	0.012	0.016		

W-Type 6L DFN 2x2 Package

19 Footprint Information

19.1 SOT-23-6 Package

Deckage	Number of	Footprint Dimension (mm)						Toloropoo
Раскаде	Pin	P1	А	В	С	D	М	Tolerance
TSOT-26/TSOT-26(FC)/SOT-26	6	0.95	3.60	1.60	1.00	0.70	2.60	±0.10

19.2 WDFN-6L 2x2 Package

Package	Number of		Footprint Dimension (mm)							Talaranaa
	Pin	Р	А	В	С	D	Sx	Sy	М	Tolerance
V/W/U/XDFN2*2-6	6	0.65	2.80	1.20	0.80	0.35	1.40	0.80	1.65	±0.05

20 Packing Information

20.1 Tape and Reel Data

20.1.1 SOT-23-6

SOT/TSOT-23-6/8:

Trailer - 160 mm minimum, ---- Components ----- 600 mm Minimum, ----

Package Type	Tape Size Pocket Pitch Reel Size		ze (A)	Units	Trailer	Leader	Reel Width (W2)	
	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min./Max. (mm)
SOT-23-6	8	4	180	7	3,000	160	600	8.4/9.9

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 8mm carrier tape: 0.5mm max.

Tana Siza	W1	Р		P B		F		ØJ		К		Н
Tape Size	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	1.3mm	1.7mm	0.6mm

20.1.2 WDFN-6L 2x2

	Tape Size	Pocket Pitch	Reel Si	ze (A)	Units	Trailer	Leade	Reel Width (W2)	
Package Type	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	r(mm)	Min./Max. (mm)	
(V, W) QFN/DFN 2x2	8	4	180	7	2,500	160	600	8.4/9.9	

C, D, and K are determined by component size.				
The clearance between the components and				
the cavity is as follows:				
- For 8mm carrier tape: 0.5mm max.				

Tana Siza	W1	Р		P B		F		ØJ		К		Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	1.0mm	1.3mm	0.6mm

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. www.richtek.com

20.2 Tape and Reel Packing

20.2.1 SOT-23-6

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	3 reels per inner box Box A
2	HIC & Desiccant (1 Unit) inside	5	12 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	R	Reel		Box		Carton			
Package	Size	Units	Item	Reels	Units	Item	Boxes	Unit	
COT 02 0		2 000	Box A	3	9,000	Carton A	12	108,000	
501-23-0	1	3,000	Box E	1	3,000	For Cor	nbined or Partial R	Reel.	

20.2.2 WDFN-6L 2x2

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	3 reels per inner box Box A
2	HIC & Desiccant (1 Unit) inside	5	12 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	I	Reel		Box		Carton			
Package	Size	Units	Item	Reels	Units	Item	Boxes	Unit	
(V, W)	-7"	0.500	Box A	3	7,500	Carton A	12	90,000	
QFN & DFN 2x2	7.	2,500	Box E	1	2,500	For Co	mbined or Partial R	eel.	

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

20.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band	
Ω/cm^2	10 ⁴ to 10 ¹¹						

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

21 Datasheet Revision History

Version	Date	Description	Item
12	2024/10/6	Modify	General Description on page 1 Features on page 1 Simplified Application Circuit on page 1 Functional Pin Description on page 4 Functional Block Diagram on page 5 Electrical Characteristics on page 7 Operation on page 12 - Added Operation Application Information on page 13, 14 Footprint Information on page 19, 20 - Added Footprint Information Packing Information on page 21 to 25 - Added packing information