

Evaluation Boards

ign **کے** Sample & Is Buy

RICHTEK

RT9478M

24V Input for 2 to 4 Cell NVDC Buck-Boost Battery Charge Controller with PROCHOT, IBAT, and IBUS Pins, and SMBus

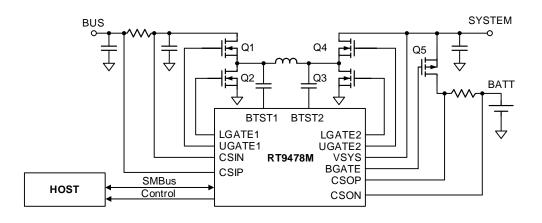
1 General Description

The RT9478M is a 4-switch bidirectional buck-boost Narrow Voltage DC (NVDC) charge controller, designed to charge 2- to 4-cell batteries from a wide range of DC power sources, including USB-C Power Delivery (PD) sources, conventional AC-DC charger adapters, and mobile batteries.

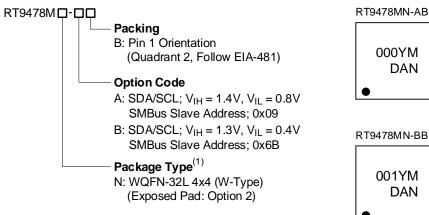
The device's SMBus serial communication interface allows for flexible programming of various parameters, including charging current, charging voltage, and protection thresholds for overvoltage and undervoltage conditions affecting the input, battery, and system outputs.

The recommended junction temperature range is -40° C to 125° C, and the ambient temperature range is -40° C to 85° C.

2 Applications


- Drones
- Portable Speakers
- Portable Devices and Accessories

3 Features


- Programmable Frequency: 720kHz/800kHz/1.2MHz
- Wide Input Voltage Range from 3.8V to 24V
 - Average Input Current Regulation (AICR)
 - Minimum Input Voltage Regulation (MIVR)
- Support 10m Ω and 5m Ω Sensing Resister
- High Accuracy for 2% Battery Charge Current and 0.5% Voltage Regulation
- Wide Battery Regulation Voltage Range from 5V to 19.2V
- Support USB On-The-Go (OTG)
- 5V NMOSFET Gate Driver
- 8-Bit A/D Converter for Monitor Functions
 - Input, System and Battery Voltage
 - Input and Battery Current
 - System Power
 - Independent Comparator Input Voltage
 - Input (IBUS) and Battery (IBAT) Current
- Low Battery Quiescent Current
- Programmable System Overvoltage Protection
- Protection
 - Input, System and Battery Overvoltage
 - System Undervoltage Protection
 - Input and Battery Overcurrent Protection
 - Over-Temperature Protection
- SMBus Compliant Serial Communication

Simplified Application Circuit 4

Ordering Information 5

Note 1.

Richtek products are Richtek Green Policy compliant and marked with (1) indicates compatible with the current requirements of IPC/JEDEC J-STD-020.

Marking Information 6

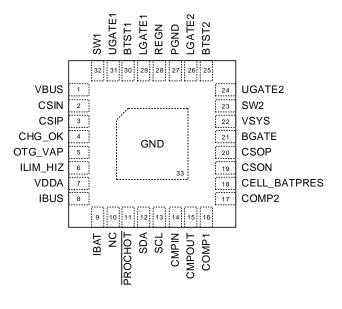
001YM

DAN

000: Product Code YMDAN: Date Code

001: Product Code YMDAN: Date Code

Table of Contents


1	Gene	ral Description	1
2	Appli	cations	1
3	Featu	res	1
4	Simpl	ified Application Circuit	2
5	Order	ing Information	2
6	Marki	ng Information	2
7	Pin C	onfiguration	4
8	Funct	ional Pin Description	4
	8.1	IO Type Definition	5
9	Funct	ional Block Diagram	6
10		ute Maximum Ratings	
11	Reco	nmended Operating Conditions	8
12	Electi	ical Characteristics	8
13	Typic	al Application Circuit	
14		al Operating Characteristics	
15	Opera	ition	
15	Opera 15.1	ition Overview	
15		Overview	25
15	15.1		25 27
15	15.1 15.2	Overview Power-Up Sequence Configuration	25 27 28
15	15.1 15.2 15.3	Overview Power-Up Sequence Configuration Charging Battery	25 27 28 30
15	15.1 15.2 15.3 15.4	Overview Power-Up Sequence Configuration	25 27 28 30
15	15.1 15.2 15.3 15.4 15.5	Overview Power-Up Sequence Configuration Charging Battery Dynamic Power Management	25 27 28 30 32

	15.8	OTG Mode (USB On-The-Go)	
	15.9	Vmin Active Protection (VAP)	37
	15.10	HiZ Mode	37
	15.11	Learn Mode	37
	15.12	Force Converter Off Mode	37
	15.13	Processor Hot (PROCHOT)	38
	15.14	Protection	
	15.15	Other Features	43
	15.16	SMBus Communication Interface	44
16	Applic	ation Information	45
	16.1	Thermal Considerations	45
	16.2	Register to be Reset by Input Power is	
		Unplugged	46
	16.3	Register to be Reset by	
		the CELL_BATPRES Pin Pulled Down	46
17	Functi	onal Register Description	47
18	Outline	e Dimension	77
19	Footpr	int Information	78
20	Packin	g Information	79
	20.1	Tape and Reel Data	79
	20.2	Tape and Reel Packing	80
	20.3	Packing Material Anti-ESD Property	
21	Datash	neet Revision History	82

7 Pin Configuration

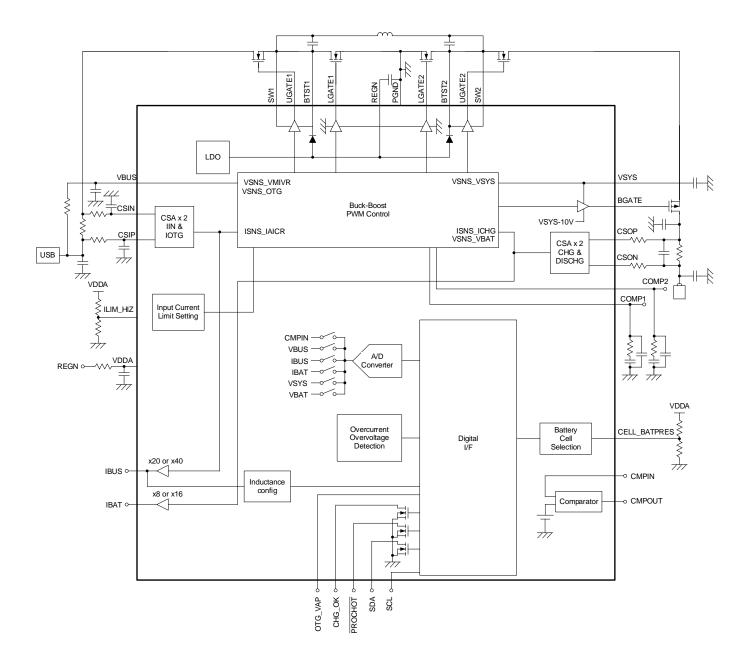
(TOP VIEW)

WQFN-32L 4x4

8 Functional Pin Description

Pin No.	Pin Name	I/O	Pin Function
1	VBUS	PWR	Charger input voltage.
2	CSIN	Ι	Input current sense negative input.
3	CSIP	Ι	Input current sense positive input.
4	CHG_OK	0	Open drain, active high indicator to inform the system for charging.
5	OTG_VAP	I	Mode enables pin for OTG/VAP in reverse mode. If OTG and VAP are not used, this pin can be connected to GND.
6	ILIM_HIZ	Ι	Input current limit programming and HiZ mode enable input pin.
7	VDDA	PWR	Internal power supply pin. Connect REGN through a filter.
8	IBUS	0	Input current monitor analog output pin. This pin is also used to detect inductor value.
9	IBAT	0	Battery current monitor analog output pin. This pin can be unconnected if battery current monitor is not used.
10	NC	0	This pin has to be disconnected
11	PROCHOT	0	Processor hot indicator open drain output.
12	SDA	I/O	Open drain data signal input/output pin of the SMBus interface.
13	SCL	I	Clock signal input pin of the SMBus interface.
14	CMPIN	I	Independent comparator input pin. This pin can be connected to GND if independent comparator is not used.
15	CMPOUT	0	Open drain output of independent comparator. This pin can be unconnected if independent comparator is not used.
16	COMP1	Ι	Buck-boost converter compensation pin 1.

RT9478M


Pin No.	Pin Name	I/O	Pin Function
17	COMP2	I	Buck-boost converter compensation pin 2.
18	CELL_BATPRE S	I	Battery cell selection pin for 2- to 4-cell battery setting. This pin should be biased from VDDA through a resister divider. This pin is also used for battery removal detection.
19	CSON	I	Battery charge current sense negative input. Positive in case of battery discharge.
20	CSOP	I	Battery charge current sense positive input. Negative in case of battery discharge.
21	BGATE	0	P-channel battery FET (BATFET) gate driver output. Connect to the gate of the battery P-MOSFET, Q5 in the simplified application circuit.
22	VSYS	PWR	System sensing voltage input.
23	SW2	PWR	Boost mode switch node. Connect to the power inductor.
24	UGATE2	ο	Boost mode high-side gate driver output. Connect to the gate of high-side N-MOSFET, Q4 in the simplified application circuit.
25	BTST2	PWR	Boost mode supply for high-side Q4 gate driver. Connect a 47nF bootstrap capacitor from this pin to the SW2 pin.
26	LGATE2	ο	Boost mode low-side gate driver output. Connect to the gate of low- side N-MOSFET, Q3 in the simplified application circuit.
27	PGND	GND	Power Ground.
28	REGN	PWR	$5V$ LDO output supplied from VBUS or VSYS. Connect a $2.2\mu F$ capacitor from this pin to GND. This output is internally used for gate drive only.
29	LGATE1	ο	Buck mode low-side gate driver output. Connect to gate of low-side N-MOSFET, Q2 in the simplified application circuit.
30	BTST1	PWR	Buck mode supply for high-side Q1 gate driver. Connect a 47nF bootstrap capacitor from this pin to the SW1 pin.
31	UGATE1	0	Buck mode high-side gate driver output. Connect to the gate of high- side N-MOSFET, Q1 in the simplified application circuit.
32	SW1	PWR	Buck mode switch node. Connect to the power inductor.
33 (Exposed Pad)	GND	GND	Ground. The exposed pad must be soldered to a large PCB pattern to achieve sufficient thermal performance.

8.1 IO Type Definition

- PWR: Power Pin
- GND: Ground Pin
- I: Input Pin
- O: Output Pin
- I/O: Input/Output Pin

RICHTEK

9 Functional Block Diagram

10 Absolute Maximum Ratings

(Note 2, Note 3)	
• BTST1, BTST2, UGATE1, UGATE2	–0.3V to 35V
• BGATE	–0.3V to 30V
• LGATE1, LGATE2	–0.3V to 6V
• SW1, SW2	-2V (50ns), -0.3V (DC) to
30V	
CSIP, CSIN, CSOP, CSON	–0.3V to 30V
CSIP to CSIN, CSOP to CSON	-0.5V to 0.5V
VBUS, VSYS	–0.3V to 30V
 CHG_OK, OTG_VAP, REGN, VDDA, ILIM_HIZ, SDA, SCL, 	
PROCHOT, CELL_BATPRES, CMPIN, CMPOUT, COMP1, COMP2	-0.3V to 6V
• IBUS, IBAT	-0.3V to 3.6V
BTST1 to SW1, BTST2 to SW2, UGATE1 to SW1, UGATE2 to SW2	–0.3V to 6V
VSYS to BGATE	15V to -0.3V
 Power Dissipation, PD @ TA = 25°C 	
WQFN-32L 4x4	2.82W
Package Thermal Resistance (<u>Note 4</u>)	
WQFN-32L 4x4, θja	35.43°C/W
WQFN-32L 4x4, θ _{JC}	0.95°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (<u>Note 5</u>)	
HBM (Human Body Model)	2kV
CDM (Charged Device Model)	500V

- **Note 2**. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 3. Absolute Maximum Ratings and ESD Susceptibility are guaranteed at T_J = 25°C.
- **Note 4**. θ_{JA} is simulated under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is simulated at the bottom of the package
- Note 5. Devices are ESD sensitive. Handling precautions are recommended.

11 Recommended Operating Conditions

(<u>Note 6</u>)

• VBUS	0V to 24V
CSON (Battery Voltage)	0V to 19.2V
• CHG_OK, OTG_VAP, SDA, SCL, PROCHOT, CMPIN, CMPOUT	0V to 5.5V
Ambient Temperature Range	40°C to 85°C
Junction Temperature Range	40°C to 125°C

Note 6. The device is not guaranteed to function outside its operating conditions.

12 Electrical Characteristics

(V_BUS_UVLO_R < V_BUS < V_BUS_OVP_F, -40°C < T_J < 125°C, unless otherwise specified.)

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
VSYS Voltage Regulation	on	·				
System Voltage		VBAT_REG (0x15[14:3]) = 0x41A0 (16.8V)	Vcson + 30	Vcson + 150	Vcson + 480	mV
Regulation Accuracy (Charge Disabled and	Vsys_reg_acc	VBAT_REG (0x15[14:3]) = 0x3138 (12.6V)	Vcson + 30	Vcson + 150	Vcson + 400	mV
OOA Disabled)		VBAT_REG (0x15[14:3]) = 0x20D0 (8.4V)	Vcson + 30	Vcson + 150	Vcson + 400	mV
Minimum System Voltage Regulation Range	Vsys_min_reg_ rng		5		19.2	V
	Vsys_min_reg_ acc	VSYS_MIN (0x3E[15:8])		12.3		V
Minimum System		= 0x7B00	-2		2	%
Voltage Regulation		VSYS_MIN (0x3E[15:8]) = 0x5C00		9.2		V
Accuracy (VCSON below Reg 0x3E setting,			-2		2	%
EN_OOA = 0b)		VSYS_MIN (0x3E[15:8]) = 0x4200		6.6		V
			-3		3	%
Battery Voltage Regula	tion	·				
Battery Voltage Regulation Range	VBAT_REG_RNG		5		19.2	V
		VBAT_REG (0x15[14:3])		16.8		V
		= $0x41A0$, TJ = 0 to $85^{\circ}C$	-0.5		0.5	%
Battery Voltage		VBAT_REG (0x15[14:3])		12.6		V
Regulation Accuracy (Charge Enable)	VBAT_REG_ACC	=0x3138, TJ = 0 to 85°C	-0.5		0.5	%
, ,		VBAT_REG (0x15[14:3])		8.4		V
		=0x20D0, T _J = 0 to 85°C	-0.6		0.6	%

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Battery Current Regulat	ion		1		1	
Battery Current Regulation Differential Voltage Range	Vchg_reg_rng	Vcso = Vcsop – Vcson	0		81.28	mV
		ICHG_CTRL (0x14[12:6])		4.096		A
		= 0x1000, T _J = 0 to 85°C	-3		2	%
		ICHG_CTRL (0x14[12:6])		2.048		А
Charge Battery Current Regulation Accuracy	ICHG_REG_ACC	= $0x0800$, T _J = 0 to $85^{\circ}C$	-4		3	%
		ICHG CTRL (0x14[12:6])		1.024		А
		= $0x0\overline{4}00$, T _J = $25^{\circ}C$	-5		6	%
		ICHG_CTRL (0x14[12:6]) = 0x0400, TJ = 0 to 85°C		1.024		А
			-10		7	%
		ICHG_CTRL (0x14[12:6]) = 0x0200, TJ = 25°C		0.512		А
			-12		12	%
		ICHG_CTRL (0x14[12:6])		0.512		А
		= 0x0200, T _J = 0 to 85°C	-18		13	%
Pre-Charge Battery Current Limit	ILIM_PRECHG	V _{CSON} < VSYS_MIN (0x3E[15:8])		384		mA
		ICHG_CTRL (0x14[12:6])		384		mA
		= 0x0180, TJ = 0 to 85°C	-15		15	%
Pre-Charge Battery		ICHG_CTRL (0x14[12:6])		256		mA
Current Regulation	IPRECHG_REG_ACC	= 0x0100, TJ = 0 to 85°C	-20		20	%
Accuracy with RSENSE_IN = $10m\Omega$		ICHG_CTRL (0x14[12:6])		192		mA
1011122		= 0x00C0, TJ = 0 to 85°C	-25		25	%
		ICHG_CTRL (0x14[12:6])		128		mA
		= 0x0080, TJ = 0 to 85°C	-30		30	%
CSOP, CSON Leakage Current Mismatch	ILK_DIFF_CSOP_ CSON		-45		-9.5	μA
Average Input Current R	egulation (AICR)					
AICR Differential Voltage Range with RSENSE_IN = 10mΩ	VIAICR_REG_RNG	Differential voltage: Vcsip – Vcsin	0.5		64	mV

Copyright © 2025 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
		AICR_HOST (0x3F[14:8]) = 0x4E00, TJ = -40 to 105°C	3800	3900	4000	mA
AICR Accuracy with 10mΩ CSIP/CSIN Series		AICR_HOST (0x3F[14:8]) = 0x3A00, TJ = -40 to 105°C	2800	2900	3000	mA
Resistor		AICR_HOST (0x3F[14:8]) = 0x1C00, TJ = -40 to 105°C	1300	1400	1500	mA
		AICR_HOST (0x3F[14:8]) = 0x0800, TJ = -40 to 105°C	300	400	500	mA
CSIP, CSIN Leakage Current Mismatch	ILK_DIFF_CSIP_CSIN	VCSIP = VCSIN = 11V	-37.5		-13	μA
Setting Voltage Range for AICR (ILIM_HIZ Pin)	Vaicr_rng_ilim_hi z		0.958		3.333	V
		VILIM_HIZ = 2.166V TJ = -40 to 105°C	3800	4000	4200	mA
AICR Setting Voltage	IAICR_REG_ACC_	VILIM_HIZ = 1.833V TJ = -40 to 105°C	2800	3000	3200	mA
Accuracy on the ILIM_HIZ pin	ILIM_HIZ	VILIM_HIZ = 1.333V TJ = -40 to 105°C	1300	1500	1700	mA
		VILIM_HIZ = 1.0 V TJ = -40 to 105°C	300	500	700	mA
ILIM_HIZ Pin Leakage Current	Ilk_ilim_hiz	VILIM_HIZ = 5V	-1		1	μΑ
Minimum Input Voltage I	Regulation (MIVR)					
MIVR Range	Vmivr_reg_rng		3.2		19.52	V
		VMIVR (0x3D[13:6])		18.688		V
		= 0x3C80	-2		2	%
MIVR Accuracy		VMIVR (0x3D[13:6]) = 0x7B00		10.88		V
INITY R ACCULACY	Vmivr_reg_acc		-2.5		2.5	%
		VMIVR (0x3D[13:6]) = 0x0500		4.48		V
			-5		5	%
OTG Current Regulation	I					
OTG Output Current Regulation Differential Voltage Range	VIOTG_REG_RNG		0		63.5	mV
		OTG_CUR (0x3C[14:8]) = 0x3C00	2.8	3	3.2	А
OTG Output Current Regulation Accuracy	IOTG_ACC	OTG_CUR (0x3C[14:8]) = 0x1E00	1.3	1.5	1.7	
		OTG_CUR (0x3C[14:8]) = 0x0A00	0.3	0.5	0.7	
OTG Voltage Regulation			•			
OTG Voltage Regulation Range (OOA Disabled)	Votg_reg_rng		3		24	V

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
		OTG_VOL (0x3B[13:2])		20		V
		= 0x2710	-2		2	%
OTG Voltage Regulation		OTG_VOL (0x3B[13:2])		12		V
Accuracy (OOA Disabled)	Votg_reg_acc	= 0x1770	-2		2	%
		OTG_VOL (0x3B[13:2])		5		V
		= 0x09C4	-3		3	%
REGN Regulator						
REGN Regulator Voltage	VREGN_REG	VBUS = 10V	4.75	5	5.25	V
REGN Voltage in Drop Out Mode	VREGN_DROP	VBUS = 5V, IREGN = 20mA		100	200	mV
REGN Current Limit when Converter is Enabled	ILIM_REGN	VBUS = 10V	65	78		mA
REGN Undervoltage	VREGN_UVLO_F		3	3.1	3.2	V
Quiescent Current					·	
		Low power mode V _{BAT} = 18V, EN_LPWR (0x12[15]) = 1 (Low power mode), EN_PROCHOT_LPWR = 0 (PROCHOT disabled)		18	45	
Device Powered by Battery. BATFET On	IQ_BATFET_ON	Low power mode with PROCHOT V _{BAT} = 18V, EN_LPWR (0x12[15]) = 1 (Low power mode), EN_PROCHOT_LPWR = 1 (PROCHOT enabled)		24	60	μΑ
		Performance mode V _{BAT} = 18V, EN_LPWR (0x12[15]) = 0 (Performance mode)		850	1170	
	IQ_STBY_BUCK	VBUS = 20V, VBAT = 12.6V, Qg = 7.5nC, no load, EN_OOA (0x12[10]) = 0 (OOA disabled)		1.4		
Device Powered VBUS BATFET Off (<u>Note 7</u>)	IQ_STBY_BOOST	V _{BUS} = 5V, V _{BAT} = 8.4V, Qg = 7.5nC, no load, EN_OOA (0x12[10]) = 0 (OOA disabled)		3.6		mA
	IQ_STBY_BB	V _{BUS} = 12V, V _{BAT} = 12V, Qg = 7.5nC, no load, EN_OOA (0x12[10]) = 0 (OOA disabled)		2.1		

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

11

www.richtek.com

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Device Powered by Battery, OTG Mode (<u>Note 7</u>)		V _{BAT} = 8.4V, VOTG_REG (0x3B[13:2]) = 0x09C4 (5V), Qg = 7.5nC, no load, EN_OOA (0x12[10]) = 0 (OOA disabled)		1.8		
	IQ_STBY_OTG	V _{BAT} = 8.4V, VOTG_REG (0x3B[13:2]) = 0x1770 (12V), Qg = 7.5nC, no load, EN_OOA (0x12[10]) = 0 (OOA disabled)		3.0		mA
		V _{BAT} = 8.4V, VOTG_REG (0x3B[13:2]) = 0x2710 (20V), Qg = 7.5nC, no load, EN_OOA (0x12[10]) = 0 (OOA disabled)		5.3		
Input Current and Batte	ry Current Monitor					
Input Common Mode Range	VCSIP_CSIN_RNG		3.8		24	V
IBUS Output Clamp Voltage	VIBUS_CLAMP		3.1	3.2	3.3	V
IBUS Output Current	libus				1	mA
Input Current Sensing	Aibus	IBUS_GAIN (0x12[4]) = 0		20		
Gain	AIBUS	IBUS_GAIN (0x12[4]) = 1	-	40	V/V	
	VIBUS_ACC	V(CSIP – CSIN) = 40.96mV	-4		2	- %
Input Current Monitor		V(CSIP – CSIN) = 20.48mV	-5		3	
Accuracy		V(CSIP – CSIN) = 10.24mV	-8		6	
		V(CSIP – CSIN) = 5.12mV	-15		10	
Maximum Capacitance at the IBUS Pin (<u>Note 7</u>)	CIBUS_MAX				100	pF
Input Common Mode Range	VCSOP_CSON_RNG		3.8		19.2	V
IBAT Output Clamp Voltage	VIBAT_CLAMP		3.1	3.2	3.3	V
IBAT Output Current	IIBAT				1	mA
Charge and Discharge	Aibat	IBAT_GAIN (0x12[3]) = 0	-	8		V/V
Current Sensing Gain		IBAT_GAIN (0x12[3]) = 1		16		V/V
		V(CSOP - CSON) = 40.96mV	-2		2	
Charge and Discharge Current Monitor	Vibat acc	V(CSOP - CSON) = 20.48mV	-4		4	%
Accuracy	VIBAT_ACC	V(CSOP - CSON) = 10.24mV	-7		7	/0
		V(CSOP - CSON) = 5.12mV	-15		15	
Maximum Capacitance at the IBAT Pin (<u>Note 7</u>)	Сіват_мах				100	pF

RT9478N	
----------------	--

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit					
Vmin Active Protection PROCHOT Comparator											
VAP VSYS Rising Threshold 1	VSYS_VAP1_R	VSYS_TH1 (0x33 [7:2]) = 100000	6.3	6.5	6.65	V					
VAP VSYS Falling Threshold 1	VSYS_VAP1_F	VSYS_TH1 (0x33 [7:2]) = 100000	6.2	6.4	6.65	V					
VAP VSYS Threshold 1 Hysteresis	VSYS_VAP1_HYS			100		mV					
VSYS Threshold 1 Falling Deglitch for VAP Shooting	tDEGLITCH_VSYS_ VAP1			4		μs					
VAP VSYS Rising Threshold 2	Vsys_vap2_r	VSYS_TH2 (0x37 [7:2]) = 0x011011	5.8	6	6.15	V					
VAP VSYS Falling Threshold 2	VSYS_VAP2_F	VSYS_TH2 (0x37 [7:2]) = 0x011011	5.7	5.9	6.05	V					
VAP VSYS Threshold 2 Hysteresis	Vsys_vap2_hys			100		mV					
VSYS Threshold 2 Falling Deglitch for Throttling	tdeglitch_vsys_ _vap2			4		μs					
VAP Mode VBUS Rising Threshold	VBUS_VAP_R	VBUS_VAP_TH (0x37[15:9]) = 0000101	3.65	3.85	4.0	V					
VAP Mode VBUS Falling Threshold	VBUS_VAP_F	VBUS_VAP_TH (0x37[15:9]) = 0000101	3.5	3.7	3.85	V					
VAP Mode VBUS Threshold Hysteresis	VBUS_VAP_HYS			150		mV					
VBUS Falling Deglitch for Throttling	tdeglitch_vbus_ _vap			4		μs					
Protection Comparators	; ;										
VSYS Undervoltage Rising Threshold	VSYS_UVP_R	VSYS_UVP (0x36[15:13]) = 001	3.7	3.8	3.9	V					
VSYS Undervoltage Falling Threshold	VSYS_UVP_F	VSYS_UVP (0x36[15:13]) = 001	3.55	3.65	3.75	V					
VSYS Undervoltage Hysteresis	VSYS_UVP_HYS			150		mV					
VBUS Undervoltage Rising Threshold	Vbus_uvlo_r		3.1	3.2	3.3	V					
VBUS Undervoltage Falling Threshold	VBUS_UVLO_F		3	3.1	3.2	V					
VBUS Undervoltage Hysteresis	VBUS_UVLO_HYS			100		mV					
VBUS Converter Enable Rising Threshold	VBUS_CONVEN_R		3.7	3.8	3.9	V					
VBUS Converter Enable Falling Threshold	VBUS_CONVEN_F		3.4	3.5	3.6	V					
VBUS Converter Enable Hysteresis	VBUS_CONVEN_HYS			300		mV					

RICHTEK

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
VBUS Overvoltage Rising Threshold	VBUS_OVP_R		26	26.8	27.7	V
VBUS Overvoltage Falling Threshold	VBUS_OVP_F		25	25.8	26.7	V
VBUS Overvoltage Hysteresis	VBUS_OVP_HYS			1		V
VBUS Deglitch Overvoltage Rising	tDEGLITCH_VBUS_ OVP_R			100		μs
VBUS Deglitch Overvoltage Falling	tDEGLITCH_VBUS_ OVP_F			1		ms
VBUS (OTG) Undervoltage Falling Threshold	VBUS_OTG_UVP_F	As percentage of OTG_VOL (0x3B[13:2])		85		%
VBUS (OTG) Undervoltage Deglitch Time	tdeglitch_vbus_ _otg_uvp			7		ms
VBUS (OTG) Overvoltage Rising Threshold	VBUS_OTGOVP_R	As percentage of OTG_VOL (0x3B[13:2])		110		%
VBUS (OTG) Overvoltage Deglitch Time	tdeglitch_vbus_ _otg_uvp			10		ms
VBAT Undervoltage Rising Threshold	VBAT_UVLO_R	VCSON rising	3.58	3.7	3.82	V
VBAT Undervoltage Falling Threshold	VBAT_UVLO_F	VCSON falling	3.46	3.58	3.7	V
VBAT Undervoltage Hysteresis	Vbat_uvlo_hys			120		mV
VBAT OTG Enable Rising Threshold	VBAT_OTGEN_R	VCSON rising	4.28	4.4	4.52	V
VBAT OTG Enable Falling Threshold	VBAT_OTGEN_F	VCSON falling	3.93	4.05	4.17	V
VBAT OTG Enable Hysteresis	VBAT_OTGEN_HYS			350		mV
		As percentage of VBAT_REG(0x15[14:3]), $6.5V \le VBAT < 7.4V$	102	104	106	
VBAT Overvoltage Rising Threshold	Vbat_ovp_r	As percentage of VBAT_REG(0x15[14:3]), 7.4V \leq VBAT < 11V	102.5	104	105.5	%
		As percentage of VBAT_REG(0x15[14:3]), $11V \leq VBAT$	103	104	105	

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
		As percentage of VBAT_REG(0x15[14:3]), $6.5V \le VBAT < 7.4V$	100	102	104		
VBAT Overvoltage Falling Threshold	VBAT_OVP_F	As percentage of VBAT_REG(0x15[14:3]), 7.4V \leq V _{BAT} < 11V	100.5	102	103.5	%	
		As percentage of VBAT_REG(0x15[14:3]), $11V \le VBAT$	101	102	103		
VBAT Overvoltage Hysteresis	VBAT_OVP_HYS	As percentage of VBAT_REG(0x15[14:3])		2		%	
Discharge Current during BATOVP	IDISCHG_BAT_OVP	Discharge current through the VSYS pin		40		mA	
		VSYS_OVP (0x40[14:12]) = 000 (Depends on cell count), 2s by CELL_BATPRES	11.7	12	12.2		
System Overvoltage Rising Threshold to Turn Off Converter	Vsys_ovp_r	VSYS_OVP (0x40[14:12]) = 000 (Depends on cell count), 3s by CELL_BATPRES	19	19.5	20	V	
		VSYS_OVP (0x40[14:12]) = 000 (Depends on cell count), 4s, by CELL_BATPRES	19	19.5	20		
System Overvoltage Hysteresis	Vsys_ovp_hys			200		mV	
Discharge Current during SYSOVP	IDISCHG_SYS_OVP	Discharge current through the VSYS pin		40	1	mA	
Pre-Charge to Fast Char	ge Transition						
Pre-Charge to Fast Charge Mode Transient		As percentage of VSYS_MIN (0x3E[15:8]), VBAT < 6.5V	97.5	100	102.5	0/	
Threshold, Vcson Rising	Vprechg_r	As percentage of VSYS_MIN (0x3E[15:8]), VBAT \geq 6.5V	98	100	102)2	
Pre-Charge to Fast Charge Mode Transient Threshold, V _{CSON} Falling	Vprechg_f	As percentage of VSYS_MIN (0x3E[15:8])	-	97.5		%	
Fast Charge to Pre- Charge Mode Transient Threshold Hysteresis	Vprechg_hys	As percentage of VSYS_MIN (0x3E[15:8])		2.5		%	
Input Overcurrent Comp	arator						
CSIP to CSIN Rising Threshold	IBUS_OCP1_R	As percentage of IAICR2 (0x33[15:11]), IBUS_OCP1_TH (0x31[2]) = 1 (200% of IAICR2), IAICR2 > 2A	180	200	220	%	
Rising Deglitch Time	tDEGLITCH_ BUS_OCP1_R			250		μs	
Relax Time	tRELAX_BUS_OCP1			250	-	ms	

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit				
Converter Overcurrent Comparator										
		Q2_OCP (0x31[5]) = 1		150		mV				
	VLIM_Q2_OCP	Q2_OCP (0x31[5]) = 0		210						
Converter Overcurrent Limit Across Q2 MOSFET Drain to Source Voltage	VLIM Q2 OCP S	Q2_OCP (0x31[5]) = 1 (150mV), Vsys < Vsys_uvlo_f or Vcson < Vbat_uvlo_r		45		mV				
	VLIM_Q2_OCP_S	Q2_OCP (0x31[5]) = 0 (210mV), Vsys < Vsys_uvlo_f or Vcson < Vbat_uvlo_r		60		iiiv				
		IBUS_OCP2_TH (0x31[4]) = 1, RSNS_IN (0x30[11]) = 0 (10mΩ)		150						
Converter Overcurrent Limit Across CSIP -		IBUS_OCP2_TH (0x31[4]) = 0, RSNS_IN (0x30[11]) = 0 (10mΩ)		280						
CSIN Input Current Sensing Resistor	VBUS_OCP2	IBUS_OCP2_TH (0x31[4]) = 0, Vsys < Vsys_uvlo_f or Vcson < Vbat_uvlo_r		150		mV				
		IBUS_OCP2_TH (0x31[4]) = 1, Vsys < Vsys_uvlo_f or Vcson < Vbat_uvlo_r		90						
Ship-Mode Discharge C	Current					•				
	ICSON_DCHG	EN_SHIP_DCHG (0x30[1]) = 1 (enabled)		10						
Discharge VBAT Cap	ICSOP_DCHG	EN_SHIP_DCHG (0x30[1]) = 1 (enabled)		10		mA				
Over-Temperature Prot	ection (OTP)									
Over-Temperature Protection Rising Threshold (<u>Note 7</u>)	Totp_r			140		°C				
Over-Temperature Protection Falling Threshold (<u>Note 7</u>)	Totp_f			125		°C				
Over-Temperature Protection Threshold Hysteresis (<u>Note 7</u>)	Тотр_нуѕ			15		°C				
Over-Temperature Protection Rising Deglitch	tDEGLITCH_OTP_R			100		μs				
Over-Temperature Protection Falling Deglitch	tDEGLITCH_OTP_F			12		ms				

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

RT9478M

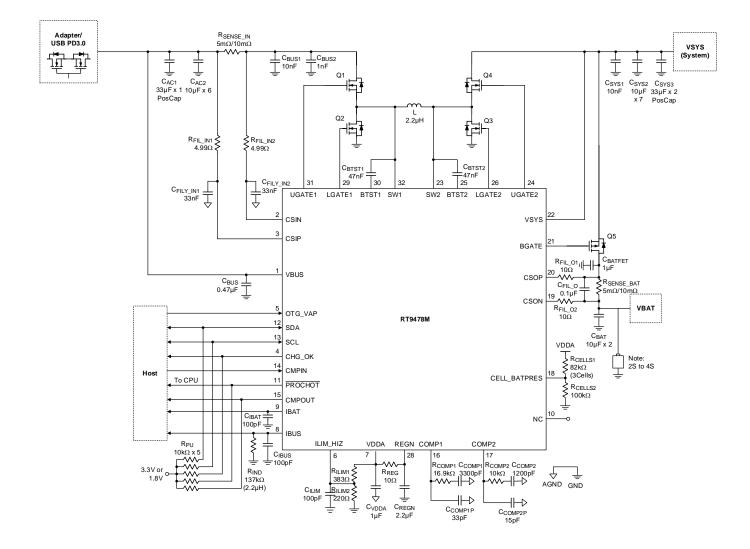
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
ICRIT PROCHOT Compa	rator					
Input Current Rising Threshold for Throttling as 10% above IAICR2	Icrit	Only when IAICR2 setting is higher than 2A	104	110	118	%
INOM PROCHOT Compa	irator					
INOM Rising Threshold as 10% above ILIM1	linom	Only when IAICR1 setting is higher than 2A	104	110	117	%
Battery Discharge Curre	ent Limit PROCHOT	Comparator				
IDCHG Threshold1	IDISCHG1	IDCHG_TH1 (0x34[15:10]) = 010000, with 10mΩ Rsense_bat	 96	8192	 103.5	mA %
IDCHG Threshold1 Deglitch Time	tDEGLITCH_DISCHG1	IDCHG_DEG1 (0x34[9:8]) = 01	1.0625	1.25	1.4375	s
IDCHG Threshold2	IDISCHG2	IDCHG_TH1 (0x34[15:10]) = 010000, IDCHG_TH2 (0x36[5:3])		12288		mA
		= 001 (150% of IDCHG1_TH1) with $10m\Omega$ RSENSE_BAT	96		103.5	%
IDCHG Threshold2 Deglitch Time	tDEGLITCH_DISCHG2	IDCHG_DEG2 (0x36[7:6]) = 01		1.6		ms
Independent Comparato	r					
Independent Comparator	VCMPIN_F	CMP_REF (0x30[7]) = 1, CMPIN falling	1.17	1.2	1.23	V
Threshold		CMP_REF (0x30[7]) = 0, CMPIN falling	2.27	2.3	2.33	v
Independent Comparator Hysteresis	VCMPIN_HYS	CMPIN rising		100		mV
Independent Comparator Threshold in Low Power Mode	VCMPIN_LPWR_F	CMPIN rising, EN_PROCHOT_LPWR (0x30[14]) = 1 (enabled)		1.2		V
Converter Switching Fre	equency					
		PWM_FREQ (0x12[9]) = 0	1020	1200	1260	
Converter Switching Frequency	fsw	PWM_FREQ (0x12[9]) = 1	680	800	840	kHz
		PWM_LOWFREQ (0x40[10]) = 1	612	720	756	
Converter OOA Minimum Frequency	fsw_ooa_min	EN_OOA (0x12[10]) = 1 (OOA enabled)		25		kHz
		DITHER_EN (0x36[12:11]) = 00		Disable		
Frequency Dither Configuration	fsw_dither	DITHER_EN (0x36[12:11]) = 01		±2		%
		DITHER_EN (0x36[12:11]) = 10		±4		

Parameter	Parameter Symbol Test Conditions		Min	Тур	Мах	Unit
		DITHER_EN (0x36[12:11]) = 11		±6		
BATFET Gate Driver	·					
Gate Drive Voltage on BATFET	VBGATE_ON	VBGATE = VVSYS – VBGATE	8.5	10	11.5	V
Drain-Source Voltage on BATFET during Ideal Diode Operation	VF_IDEAL	VF_IDEAL = VCSON – VVSYS		30		mV
BATFET Turn-On Resistance	RBGATE_ON	Measured by sourcing 10μA and 100μA current to BGATE	1.5	2.5	4	kΩ
BATFET Turn-Off Resistance	RBGATE_OFF	Measured by sinking 10µA current from BGATE		0.8	2.1	kΩ
Input High-Side Driver (UGATE1)					
High-Side Driver (Q1)		VBTST1 – VSW1 = 5V, DIS_STRGDRV (0x12[8]) = 1 (strong drive disabled)		3.1		
Turn-On Resistance	Rds_on_q1	VBTST1 – VSW1 = 5V, DIS_STRGDRV (0x12[8]) = 0 (strong drive enabled)		1.6		Ω
High-Side Driver (Q1)		VBTST1 - VSW1 = 5V, DIS_STRGDRV (0x12[8]) = 1 (strong drive disabled)		0.8		
Turn-Off Resistance	RDS_OFF_Q1	V _{BTST1} – V _{SW1} = 5V, DIS_STRGDRV (0x12[8]) = 0 (strong drive enabled)		0.5		Ω
Input High-Side Driver (UGATE2)				1	1
High-Side Driver (Q4)	Rds on Q4	V _{BTST2} – V _{SW2} = 5V, DIS_STRGDRV (0x12[8]) = 1 (strong drive disabled)		3.2		Ω
Turn-On Resistance	1103_011_04	VBTST2 – VSW2 = 5V, DIS_STRGDRV (0x12[8]) = 0 (strong drive enabled)		1.7		22
High-Side Driver (Q4)		VBTST2 – VSW2 = 5V, DIS_STRGDRV (0x12[8]) = 1 (strong drive disabled)	1	0.8		0
Turn-Off Resistance	Rds_off_q4	VBTST2 – VSW2 = 5V, DIS_STRGDRV (0x12[8]) = 0 (strong drive enabled)	-	0.5		Ω
Input Low-Side Driver (L	_GATE1)					
Low-Side Driver (Q2) Turn-On Resistance	Rds_on_q2	VREGN = 5V		1.7		Ω
Low-Side Driver (Q2) Turn-Off Resistance	RDS_OFF_Q2	VREGN = 5V		0.7		Ω
Output Low-Side Driver	(LGATE2)			-		
Low-Side Driver (Q3) Turn-On Resistance	Rds_on_q3	VREGN = 5V		1.8		Ω

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Low-Side Driver (Q3) Turn-Off Resistance	Rds_off_q3	VREGN = 5V		0.3		Ω
Integrated Bootstrap Sw	vitch (BTST1/BTST	2)				
On Resistance	RBTST_ON		1	2.1	4	Ω
Reverse Breakdown Voltage	Vbtst_rbd		25			V
Internal Soft-Start Durin	g Charge Enable				1	1
Charge Current Soft- Start Rate	SRICHG			64		A/s
Converter Soft-Start						
VSYS Slew Rate	SRsys	VCSON < VSYS_MIN (0x3E[15:8])		12.5		V/ms
VBUS Slew Rate (In OTG Mode)	SRBUS			8		V/ms
Logic Pins (CHG_OK, O	TG_VAP, and ILIM	_HIZ or SCL/SDA if Specified))		1	1
		SCL/SDA Option Code A			0.8	
Input Low Threshold	VIL_SMBUS	SCL/SDA Option Code B			0.4	V
Lessent I Park Theory I and I		SCL/SDA Option Code A	1.4			
Input High Threshold	VIH_SMBUS	SCL/SDA Option Code B	1.3			V
Output Low Voltage	Vol_smbus	SCL/SDA Drain current = 5mA			0.4	V
Leakage Current	ILK_SMBUS	Pin voltage = 5V			1	μA
Output Low Voltage	Vol_od	Drain current = 5mA At CHG_OK and CMPOUT pins			0.3	V
Leakage Current	Ilk_od	Pin voltage = 5V At CHG_OK and CMPOUT pins			1	μΑ
Output Low Voltage	Vol_prochot	50Ω is pulled up to 1.05V/5mA			0.3	V
Leakage Current	ILK_PROCHOT	Pin voltage = 5V At PROCHOT pin			1	μA
Input Low Threshold	VIL_LOGIC	At OTG_VAP pin			0.8	V
Input High Threshold	VIH_LOGIC	At OTG_VAP pin	1.4			V
Analog Inputs (CELL_B	ATPRES Pin and II	LIM_HIZ Pin)	·		•	•
Voltage to Exit HiZ Mode Rising Threshold	VIL_ILIM_HIZ	At the ILIM_HIZ pin	0.8			V
Voltage to Enter HiZ Mode Falling Threshold	VIH_ILIM_HIZ	At the ILIM_HIZ pin			0.4	V
4S Setting Condition	VCELL_4S	At CELL_BATPRES pin voltage as % of the VDDA pin	68.4	75	81.5	%
3S Setting Condition	VCELL_3S		51.7	55	65	%
2S Setting Condition	VCELL_2S		18.4	40	48.5	%

 Copyright © 2025 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation.

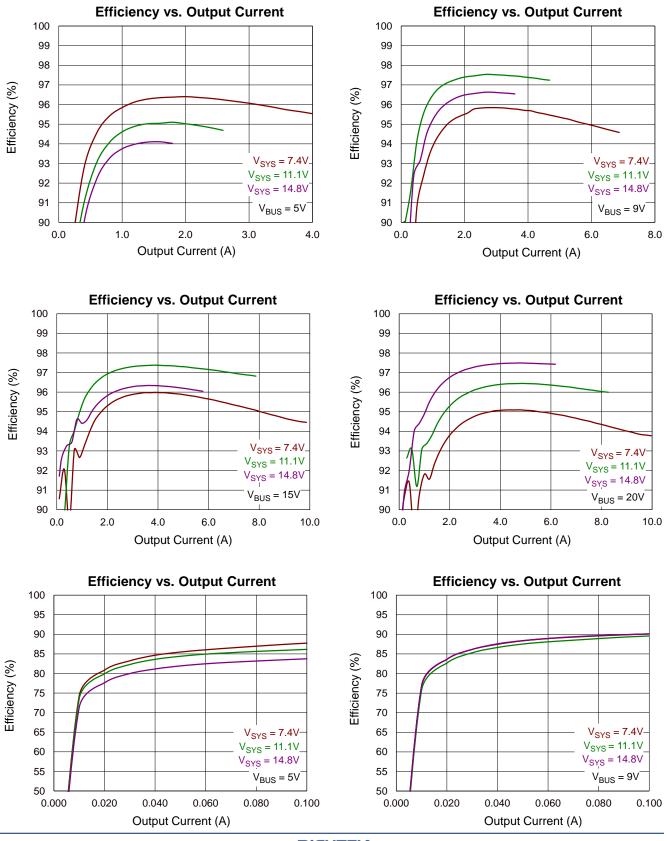
 RT9478M_DS-00
 May 2025
 www.richtek.com

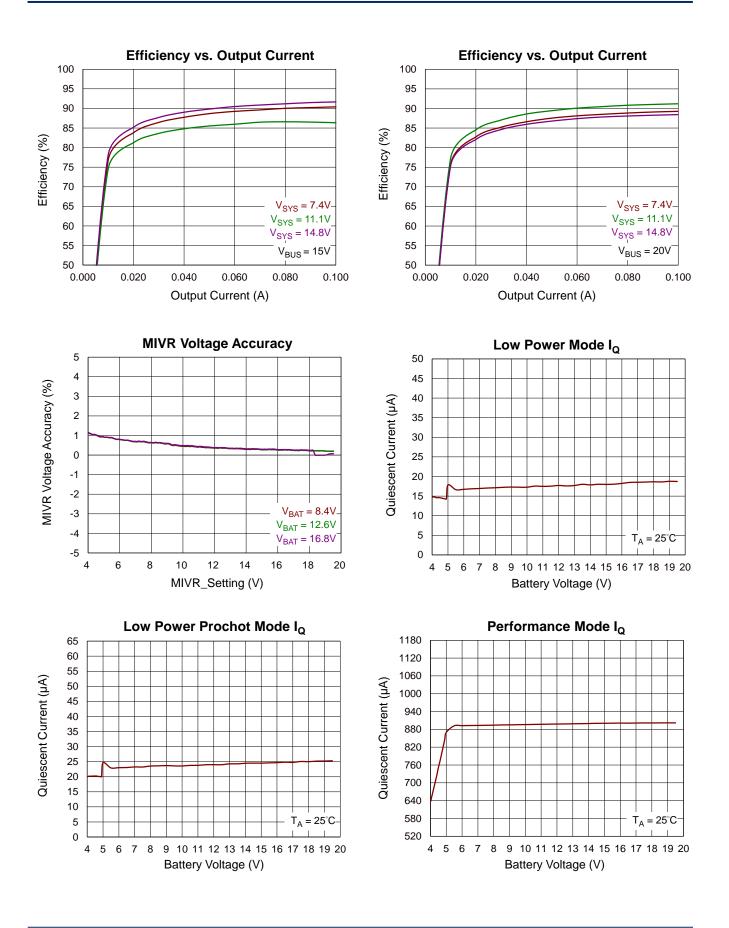


Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Battery Present Rising Threshold	VCELL_BATPRES_R	At CELL_BATPRES pin voltage as % of the VDDA pin	18			%
Battery Removed Falling Threshold	VCELL_BATPRES_F				15	%
SMBus Timing Characte	eristics (<u>Note 7</u>)					
Clock/Data Rise Time	tR				300	ns
Clock/Data Fall Time	tF				300	ns
Clock High Period	tнigн		0.6		50	μs
Clock Low Period	tLOW		1.3			μs
START Condition Setup Time	tsu;sta		0.6			μs
Hold Time After START Condition	thd;sta		0.6			μs
Data Setup Time	tsu;dat		100			ns
Data Hold Time	thd;dat		0			ns
STOP Condition Setup Time	tsu;sto		0.6			μs
Bus Free Time Between START and STOP	tBUF		1.3			μs
Bus Operating Frequency	fscl		10		400	kHz
SMBus Host Communic	ation Error					
Detect Clock Low Timeout	TIMEOUT		25		35	ms

Note 7. Guaranteed by design.

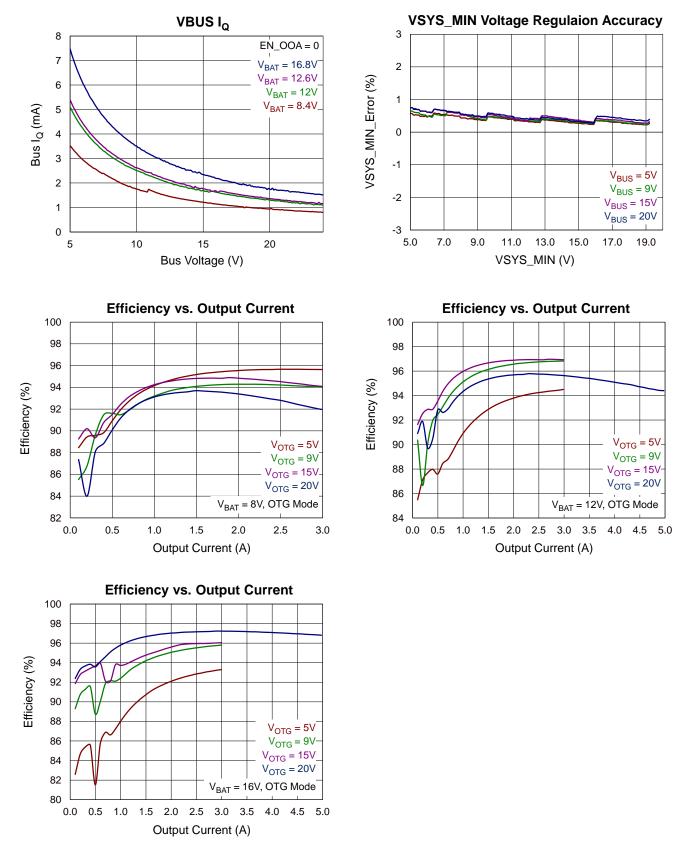
13 Typical Application Circuit


RICHTEK is a registered trademark of Richtek Technology Corporation.


14 Typical Operating Characteristics

RSENSE_IN = $10m\Omega$, RSENSE_BAT = $10m\Omega$, fsw = 800kHz, L = 2.2μ H, RDC = $8m\Omega$, Q1 to Q4: AONR36368

(Note 8)



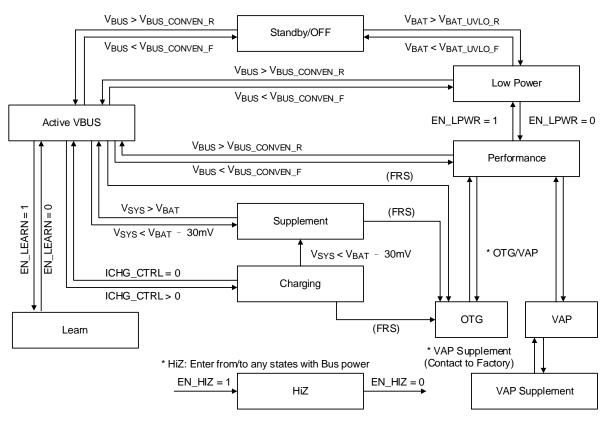
RICHTEK Copyright © 2025 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. www.richtek.com

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

Note 8. Sense resister loss is not included in efficiency data.

15 Operation

15.1 Overview


The RT9478M is an NVDC battery charger and the typical application circuit is shown in <u>13_Typical Application</u> <u>Circuit</u>. The device has 9 operation modes: Low Power Mode, Performance Mode, Active VBUS Mode, Charging Mode, Supplement Mode, OTG Mode, VAP Mode, HiZ Mode, and Learn Mode. Mode transitions are shown in Figure 1.

15.1.1 Low Power Mode

In low power mode, the system is powered only by the battery and EN_LPWR (0x12[15] = 1). All functions, except for SMBus communication are disabled to obtain a minimum quiescent current (18μ A, typical). If low power PROCHOT is enabled by setting the EN_PROCHOT_LPWR (0x30[14]) register bit to 1, PROCHOT can be asserted by an independent comparator output status with a typical quiescent current of 24μ A.

15.1.2 Performance Mode

In performance mode, the system is powered by the battery. Current monitors and A/D converter can be enabled, but the buck-boost converter is disabled.

*OTG: EN_OTG = 1, OTG_VAP = H, OTG_VAP_MODE = 0 to enter *VAP: OTG_VAP = H, OTG_VAP_MODE = 1 to enter

Figure 1. Operation State Diagram

15.1.3 Active VBUS Mode

When a valid power source is connected to VBUS, the buck-boost converter is enabled to regulate the system voltage. Refer to <u>15.3.3 System Voltage</u> for details.

15.1.4 Charging Mode

In charging mode, the battery is charged using a CC-CV profile as shown in <u>Figure 3</u>. The battery charge current is set by the ICHG_CTRL (0x14[12:6]) register, while the battery regulation voltage is configured by the VBAT_REG (0x15[14:3]) register. If the battery voltage drops below the threshold set by the VSYS_MIN (0x3E[15:8]) register, the device operates in pre-charge mode. Refer to <u>15.4_Charging Battery</u> for details.

15.1.5 Supplement Mode

When the system load is high and the bus power supply input current is insufficient, the system will activate MIVR (Minimum Input Voltage Regulation) or AICR (Average Input Current Regulation). If the VSYS drops below the battery voltage (CSON voltage), the charger immediately enters supplement mode. In this mode, both the buckboost converter and the battery supply power to the system to meet the system load requirements.

15.1.6 OTG Mode

In OTG (USB On-The-Go) mode, power is supplied to the bus side from the battery. Refer to <u>15.8</u> <u>OTG Mode</u> (<u>USB On-The-Go</u>) for details.

15.1.7 Vmin Active Protection (VAP) Mode

In VAP (Vmin Active Protection) mode, battery power is charged into the input (bus-side) capacitor. During a system peak power spike, the bus-side capacitors can supplement the system to prevent the system voltage from dropping below a specific value. Refer to <u>15.9 Vmin Active Protection (VAP)</u> for details.

15.1.8 HiZ Mode

In HiZ mode, the buck-boost converter is disabled, the A/D converter is disabled, but the REGN supply remains enabled. This mode can be transitioned to from any other VBUS mode by pulling down the ILIM_HIZ pin or setting the EN_HIZ (0x32[15]) register bit to 1. To exit HiZ mode and return to the previous mode, set the ILIM_HIZ pin to high and set the EN_HIZ register bit to 0. Refer to <u>15.10_HiZ Mode</u> for details.

15.1.9 Learn Mode

In learn mode, the buck-boost converter is disabled, and the battery MOSFET is turned on. To enter learn mode, set the EN_LEARN (0x12[5]) register bit to 1. To exit, set the EN_LEARN register bit to 0 or pull down the CELL_BATPRES pin. This mode is used by the system to calibrate the battery gas gauge throughout a full discharge/charge cycle. Refer to <u>15.1.9 Learn Mode</u> for details.

15.2 Power-Up Sequence

The RT9478M powers up from either the bus input voltage (VBUS) or the battery voltage (VBAT) on the CSON pin. The device powers up when VBUS exceeds VBUS_UVLO_R due to a power source being plugged in or when VBAT exceeds VBAT_UVLO_R due to battery connection. The host can access user registers within a maximum of 10ms after either VBUS or VBAT becomes valid.

15.2.1 Powered-Up from Bus Input

- When VBUS exceeds VBUS_UVLO_R with a 2ms deglitch time, the device becomes ready for SMBus communication.
- Once VBUS exceeds VBUS_CONVEN_R with a 45ms deglitch time, the REGN LDO is enabled and supplies power to the VDDA pin. The CHG_OK goes HIGH, and the VBUS_PG (0x20[15]) register is set to 1.
- The following functions and registers will be activated after powering up from VBUS:
 - The battery cell count is detected at the CELL_BATPRES pin.
 - The inductance in use is detected at the IBUS pin.
 - The MIVR threshold is set by the no-load VBUS voltage.
 - The AICR threshold is detected at the ILIM_HIZ pin voltage.
 - The VBAT_REG (0x15[14:3]) register, VSYS_MIN (0x3E) register, and SYSOV threshold are loaded according to the cell count.
- Eventually, the device enters Active VBUS mode, and the converter starts switching.

15.2.2 Powered-Up from Battery

- When the voltage at the CSON pin exceeds VBAT_UVLO_R, the device enters low power mode, and the BATFET is turned on.
- When the EN_LPWR (0x12[15]) register is set to 0, the device enters to performance mode and the REGN LDO is enabled and supplies power to the VDDA pin. The battery cell count is detected at the CELL_BATPRES pin.

15.2.3 Battery Cell Count, SYSOVP Threshold and VSYS_MIN Value

At power-up, the cell count is determined by the voltage at the CELL_BATPRES pin. The CELL_BATPRES pin is biased with a resistive ladder from VDDA to GND. The initial system minimum voltage (VSYS_MIN) and charge voltage (VBAT_REG) are loaded into the VSYS_MIN (0x3E[15:8]) register and the VBAT_REG (0x15[14:3]) register, respectively, and the system overvoltage protection (SYSOVP) threshold is set as shown in <u>Table 1</u>.

Table 1									
CELL_BATPRES Pin Voltage (% of the VDDA Pin)	CELL COUNT	VBAT_REG (0x15[14:3])	SYSOVP Threshold (0x40[14:12] = 000)	VSYS_MIN (0x3E[15:8])					
68.4% - 81.5%	4s	16.8V	19.5V	12.3V					
51.7% - 65.0%	3s	12.6V	19.5V	9.2V					
18.4% - 48.5%	2s	8.4V	12V	6.6V					
0% - 15%	Battery Removal	8.4V	25V	6.6V					

The VBAT_REG and VSYS_MIN registers can be overwritten by the user. The SYSOVP threshold can be selected from 15V to 24V by setting the VSYS_OVP (0x40[14:12]) register.

15.2.4 Initial Minimum Input Voltage Regulation Voltage

At VBUS power-up, the initial Minimum Input Voltage Regulation (MIVR) value is set to VBUS – 1.28[V] and stored in the VMIVR (0x3D[13:6]) register. Refer to <u>15.5.1 Minimum Input Voltage Regulation (MIVR)</u> for details.

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. RT9478M_DS-00 May 2025 www.richtek.com

Initial Average Input Current Limit 15.2.5

At VBUS power-up, the initial Average Input Current Regulation (AICR) value is set by the lower one of the AICR value set by the ILIM_HIZ pin voltage and the AICR_HOST (0x3F[14:8]) register. Refer to 15.5.2 Average Input Current Regulation (AICR) for details.

15.2.6 Inductance Detection

At VBUS power-up, the inductance value is set by the voltage at the IBUS pin. An appropriate inductance value needs to be provided to the charger for stable buck-boost converter operation. The required resistors for 1µH, 2.2μ H, and 3.3μ H inductances are $90.9k\Omega$, $137k\Omega$, and $169k\Omega$, respectively. A $\pm 2\%$ or better tolerance of the resistor is required for accurate inductance detection. The switching frequency must be chosen appropriately for the inductor.

If an additional sensing circuit is connected to the IBUS pin, it should have a high input impedance for 13ms after REGN startup to ensure accurate resistance detection and eliminate any disturbance.

Table 2 presents the recommended combinations of inductor value and frequency; other combinations are not recommended.

Inductor in Use	Resistor on the IBUS Pin					
1μH (for 1200kHz)	90.9kΩ					
1.5µH (for 800kHz or 720kHz)	121kΩ					
2.2µH (for 800kHz or 720kHz)	137kΩ or 140kΩ					
3.3µH (for 800kHz or 720kHz)	169kΩ					

Table 2

Configuration 15.3

15.3.1 Switching Frequency and Compensation

The switching frequency is selected from 800kHz, 1200kHz or 720kHz by the PWM FREQ (0x12[9]) register bit and PWM_LOWFREQ (0x40[10]). The device requires an appropriate external RC combination on the COMP1 pin and the COMP2 pin. The recommended value combinations are shown in Table 3.

	Table 3									
SW Frequency	Inductor (L)	RCOMP1	Ссомр1	Ссомр1р	RCOMP2	Ссомр2	Ссомр2р			
720kHz	3.3µH	16.9kΩ	3300pF	33pF	15kΩ	1200pF	15pF			
720kHz	2.2µH	16.9kΩ	3300pF	33pF	10kΩ	1200pF	15pF			
800kHz	3.3µH	16.9kΩ	3300pF	33pF	15kΩ	1200pF	15pF			
800kHz	2.2µH	16.9kΩ	3300pF	33pF	10kΩ	1200pF	15pF			
800kHz	1.5µH	16.9kΩ	3300pF	33pF	6.8kΩ	1200pF	15pF			
1200kHz	1.0µH	16.9kΩ	3300pF	33pF	5kΩ	1200pF	15pF			

RICHTEK is a registered trademark of Richtek Technology Corporation. Copyright © 2025 Richtek Technology Corporation. All rights reserved.

15.3.2 Current Sense Resister

Two sense resistors are needed to detect input current and battery current. The input current sense resistor, RSENSE_IN should be placed between the CSIP and CSIN pins. The battery current sense resistor, RSENSE_BAT, should be placed between the CSOP and CSON pins. These resistors must be $10m\Omega$ or $5m\Omega$. For proper operation, the sense resistor value must be set in the registers. The RSNS_IN (0x30[11]) register bit sets RSENSE_IN, and the RSNS_BAT (0x30[10]) register bit sets RSENSE_BAT.

15.3.3 System Voltage Setting

In active VBUS mode, the device controls VSYS depending on the VBAT and the VSYS_MIN. The VBAT is detected at the CSON pin, and the VSYS_MIN is set by the VSYS_MIN (0x3E) register.

If the battery voltage is lower than VSYS_MIN, the target voltage is VSYS_MIN. Once the battery voltage increases higher than VSYS_MIN, the target voltage is changed to 150mV higher than VBAT. Refer to <u>Figure 2</u> for the relationship between VBAT and VSYS when VSYS_MIN is set to 6.6V.

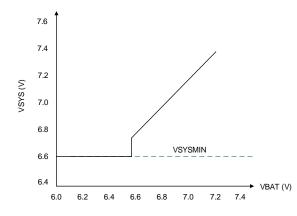


Figure 2. System Voltage and Battery Voltage Relationship in Active VBUS Mode

RT9478M DS-00 May 2025

15.4 Charging Battery

15.4.1 Charging Start

When V_{BUS} is valid, the battery charge starts by writing a non-zero value to the ICHG_CTRL (0x14[12:6]) register. This register is 7-bit with an LSB of 64mA when RSENSE_BAT is $10m\Omega$, and 128mA when RSENSE_BAT is $5m\Omega$.

15.4.2 Charging Stop

The ICHG_CTRL is reset to 0 and battery charge stops in the following cases:

- Write 0 to the ICHG_CTRL (0x14[12:6]) register.
- Write 0 to the VBAT_REG (0x15[14:3]) register.
- Set the RESET_REG (0x32[14]) register bit to 1.
- The CELL_BATPRES pin is pulled low.
- VBUS is lower than VBUS_CONVEN_F (adapter removal).
- The watchdog timer (WDT) expires. Refer to 15.4.4 Watchdog Timer (WDT).

Note that once the VBAT_REG (0x15[11:0]) is written to 0, the VBAT_REG keeps its value and the ICHG_CTRL is set to 0.

In the following cases, the battery charge temporarily stops but the ICHG_CTRL keeps its value.

- The CHG_OK is low. Refer to 15.4.3 CHG_OK Indicator and Charge Condition for detail.
- The CHG_INHIBIT (0x12[0]) register bit is written to be 1.
- Entering supplement mode.
- Entering learn mode by setting the EN_LEARN (0x12[5]) register to 1.
- Entering HiZ mode by pulling down the ILIM_HIZ pin to low or setting the EN_HIZ (0x32[15]) register to 1.

If the above conditions are removed, the battery charge restarts.

15.4.3 CHG_OK Indicator and Charge Condition

When the following conditions are satisfied, the system is ready to charge and the CHG_OK pin is pulled high.

- Bus voltage is present: VBUS_CONVEN_R < VBUS < VBUS_OVP_F
- None of the following fault events are asserted: FORCE_CONV_OFF_FLT, BUSOC1_FLT, BUSOVP_FLT, BATOCP_FLT, OTP_FLT, SYSOVP_FLT, or SYSUVP_FLT
- Battery voltage is less than VBAT_OVP_F

Also, the CHG_OK pin goes high in OTG mode if the OTG_ON_CHGOK (0x12[11]) register is set to 1. Refer to <u>15.8_OTG Mode (USB On-The-Go)</u> for details.

15.4.4 Watchdog Timer (WDT)

To protect the battery, the RT9478M has a watchdog timer (WDT). Battery charging is terminated if the WDT expires. To reset the WDT, the host must write to the ICHG_CTRL register (0x14[12:6]) or the VBAT_REG (0x15[14:3]) register via SMBus within a WDT period. The period is selectable from 5s (01), 88s (10), and 175s (11, default) by setting the WATCHDOG (0x12[14:13]) register. If 00 is set in the WATCHDOG register, the watchdog timer is disabled.

15.4.5 Charging Profile

As described in <u>15.1.4 Charging Mode</u>, the RT9478M supports a CC-CV profile.

The battery charging current is set by the ICHG_CTRL (0x14[12:6]) register.

If the battery voltage (VCSON) is below the VSYS_MIN (0x3E[15:8]) register, the device operates in pre-charge mode, and the maximum charging current is limited to 384mA.

If the battery voltage is between VSYS_MIN register and the VBAT_REG (0x15[14:3]), the device operates in fastcharge mode.

When EN_LDO (0x12[2]) bit is written to 0, the device operates in fast-charge mode even if the VCSON is less than VSYS_MIN register.

Once the battery voltage reaches the VBAT_REG register setting, the device enters CV (constant voltage) mode and maintains the battery voltage at the VBAT_REG register setting. <u>Figure 3</u> shows a conceptual charging profile. In fast-charge and pre-charge modes, the IN_FCHG (0x20[10]) or IN_PCHG (0x20[9]) bit is set to 1, respectively.

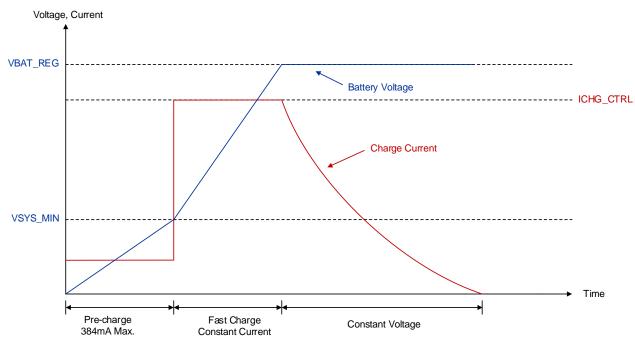


Figure 3. Charging Profile

15.5 Dynamic Power Management

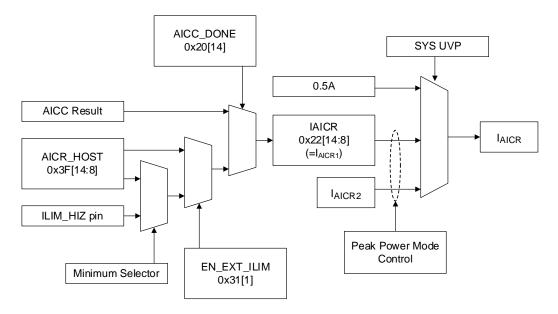
The RT9478M offers two types of input current limit functions: Minimum Input Voltage Regulation (MIVR) and Average Input Current Regulation (AICR). AICR limits the input current to the specified level IAICR1. The IAICR1 can be adjusted automatically by the Adaptive Input Current Control (AICC) function. Additionally, the peak power mode (two level AICR) function is available to periodically increase the AICR level to a higher value, IAICR2 to support peak system power.

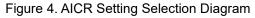
15.5.1 Minimum Input Voltage Regulation (MIVR)

When the bus power supply is overloaded, the input bus voltage (VBUS) is expected to drop due to the current limit function of the power supply. MIVR limits the input current to prevent the input voltage from dropping below the MIVR threshold.

When the V_{BUS} is connected, the MIVR threshold is set to V_{BUS} – 1.28V and the threshold is stored in the VMIVR (0x3D[13:6]) register. However, the minimum setting of the MIVR threshold is limited to 3.904V by this automatic setting.

The host can adjust the MIVR threshold through the VMIVR register, ranging from 3.2V to 19.52V with an LSB of 64mV and a 3.2V offset. For example, if the host writes 10000 (0x20, or 16 in decimal) to the VMIVR, the threshold becomes 1.024V + 3.2V = 4.224V, instead of just 1.024V ($64mV \times 16 = 1024mV$).


If the device is in MIVR, the IN_MIVR (0x20[12]) bit is set to 1.


15.5.2 Average Input Current Regulation (AICR)

AICR limits the input current to the value, IAICR1. IAICR1 is defined in the IAICR (0x22[14:8]) register, but the host cannot write to the IAICR register directly. The IAICR register value and the IAICR1 are set in the following way, as shown in <u>Figure 4</u>:

- If the EN_EXT_ILIM (0x31[7]) register is set to 1 (default), the device sets lower of two values:
 - AICR_HOST (0x3F[14:8]) register value.
 - AICR value given by the ILIM_HIZ pin voltage

The relationship between AICR value and the ILIM_HIZ pin voltage is as follows.

The IAICR1 is set by the ILIM_HIZ voltage:

 $V_{ILIM HIZ} = 5/6 \times (1[V] + 40 \times I_{AICR1}[A] \times R_{SENSE IN})$

or.

 $I_{AICR1} = (6/5 \times V_{ILIM HIZ} - 1[V]) / (40 \times R_{SENSE IN})$

For example, if the system needs to set the AICR value to 3.0A and RSENSE_IN = $10m\Omega$,

 $V_{\text{ILIM HIZ}}[V] = 5/6 \times (1[V] + 40 \times 3.0 \times 0.01) = 1.83[V]$

Therefore, 1.83V must be applied to the ILIM_HIZ pin externally.

Note that this ILIM_HIZ pin voltage is measured every time the VBUS is connected.

- If the EN_EXT_ILIM register bit is set to 0, the charger reads the AICR_HOST (0x3F[14:8]) register and sets it to the IAICR register. If the system needs to set a specific AICR value, the EN EXT ILIM must be 0, and the host needs to write the desired value to the AICR HOST register rather than to the IAICR register.
- The AICC result is prioritized over both the ILIM_HIZ pin and the AICR_HOST.
- If system under voltage protection (SYSUVP) is triggered, the AICR is temporarily clamped at 0.5A without modifying the IAICR register. The AICR is enabled during SYSUVP even when the EN_AICR (0x12[1]) is set to 0.
- If 0x00 (0mA) or 0x01 (50mA) is written to the AICR_HOST register and it is reflected in the IAICR register, IAICR1 is set to 100mA.

The AICR maximum value can be 6.3A, 6.35A or 10A. It depends on the inductance, input current sense resistor, and the EN_FAST_5MOHM (0x30[8]) register settings as shown in Table 4.

Inductance	EN_FAST_5MOHM (0x30[8])	RSNS_IN (0x30[11])	Maximum IAICR	Maximum IAICR (0x22[14:8])
1.0μΗ 1.5μΗ 2.2μΗ	X	0 (10mΩ)	6.35A	0x7F
	1	1 (5mΩ)	6.3A	0x3F
	0	1 (5mΩ)	10A	0x64
3.3µH	X	0 (10mΩ)	6.35A	0x7F
	Х	1 (5mΩ)	10A	0x64

Table 4

15.5.3 Adaptive Input Current Control (AICC)

If the end-user uses a nonstandard input power source, in some cases the AICR setting may be higher than the current limit of the input power source, causing the charger to operate in the MIVR loop. Therefore, the RT9478M offers a method to detect the input power source's current limit and the optimal input current limit level. This is called Adaptive Input Current Control (AICC).

AICC starts when the EN_AICC (0x32[11]) bit is set to 1 and the device is in MIVR (Minimum Input Voltage Regulation). During the AICC process, the internal AICR limit value is decreased until the bus input voltage recovers, and the input power source is no longer in MIVR operation. Once the optimal AICC threshold is found, the IAICR (0x22[14:8]) register is updated, and the AICC_DONE (0x20[14]) bit is asserted. Figure 5 shows the AICC operation. Note that if the bus input is unplugged, the IAICR register value and EN_AICC are reset. If EN_AICC is reset to 0 during the AICC process, AICC is disabled.

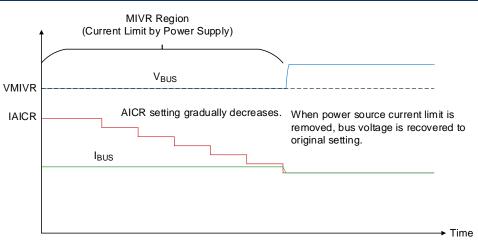


Figure 5. Adaptive Input Current Control (AICC) Operation

15.5.4 Peak Power Mode (Two Level AICR)

The peak power mode is designed to increase the input current limit for a short period to support peak system power.

Entry into peak power mode is detected under two conditions:

- IBUS hits the IAICR (0x22[14:8]) register threshold, and the EN_PKPWR_AICR (0x31[13]) register bit is set to 1.
- Vsys drops to 95% of the VSYS_MIN (0x3E[7:0]) register threshold, and the EN_PKPWR_VSYS (0x31[12]) register bit is set to 1

When the peak power mode is triggered by IBUS or VSYS, the input current limit is temporarily changed to IAICR2 for a certain overloading period. The IAICR2, is set by the IAICR2 (0x33[15:11]) register, ranging between 110% and 450% of IAICR1. The overloading period is selected from 1ms (default), 2ms, 5ms, or 10ms by the PKPWR_TOVLD_DEG (0x31[15:14]) register. After this overloading period (TOVLD) elapses, the input current limit resumes to IAICR1 and operates in the relaxation period. The relaxation period (TRELAX) is defined as the PKPWR_TMAX (0x31[9:8]) register setting minus the PKPWR_TOVLD_DEG (0x31[15:14]) register setting.

The cycle timer (TMAX) of PKPWR_TMAX (0x31[9:8]) register can be selected from 20ms (default), 40ms, 80ms, and 1s. When the cycle time expires, the current limit is set to IAICR2 again and operates in a new cycle period.

During the overloading period, the PKPWR_OVLD_STAT (0x31[11]) register bit is set to 1. If overload is removed, the PKPWR_OVLD_STAT is set to 0. If PKPWR_OVLD_STAT is written to 0 during the overloading period, the device exits from the overloading state. During the relaxation period, the PKPWR_RELAX_STAT (0x31[10]) bit is set to 1 until the relaxation period expires. If PKPWR_RELAX_STAT is written to 0 during the relaxation period, the device exits from the relaxation period. Refer to Figure 6 for the operation of peak power mode.

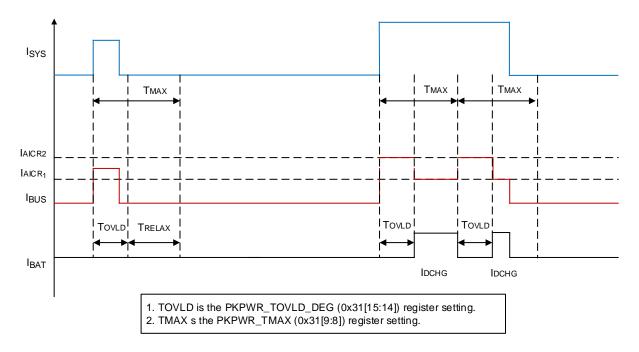


Figure 6. Peak Power Mode (Two Level Input Current Limit) Operation

15.6 Voltage, Current, and System Power Monitor

15.6.1 A/D Converter

The RT9478M features an 8-bit A/D converter for monitoring the following points: CMPIN pin, VBUS pin, input current via the differential voltage of the CSIP and CSIN pins, VSYS pin, and battery voltage via the CSON pin. The battery discharge and charge current are measured via the differential voltage of the CSOP and CSON pins but are measured in 7-bit. A/D conversion begins when the ADC_START (0x35[14]) register is set to 1, and each channel conversion takes a maximum of 25ms.

If the ADC_CONV (0x35[15]) register is 0 (A/D conversion is one-shot) ADC_START resets to 0 after one set of conversions finishes.

If the ADC_CONV is 1, A/D conversion repeats at 1-second intervals and the registers are continuously updated during this interval.

Desired conversion points must be enabled in the ADCOption (0x35) register. Each channel conversion result is stored in each dedicated register as shown in <u>Table 5</u>. The full-scale range for COMPIN is selectable via the ADC_FULLSCALE (0x35[13]) register. The A/D converter is not activated in low power mode.

Table 5						
Conversion Point	Enable Bit	Result Register	Unit (LSB)			
CMPIN Pin	EN_ADC_VCOMP 0x35[7]	VCOMP 0x25[7:0]	8mV (ADC_FULLSCALE = 0) 12mV (ADC_FULLSCALE = 1)			
VBUS Pin	EN_ADC_VBUS 0x35[6]	VBUS 0x23[15:8]	96mV			
CSIP – CSIN Pins Differential	EN_ADC_IBUS 0x35[4]	IBUS 0x25[15:8]	50mA (Rsense_in = 10mΩ) 100mA (Rsense_in = 5mΩ)			

Conversion Point	Enable Bit	Result Register	Unit (LSB)
CSON – CSOP Pins	EN_ADC_IBAT_DISCHG	IBAT_DISCHG	256mA (Rsense_bat = 10mΩ)
Differential	0x35[3]	0x24[6:0]	512mA (Rsense_bat = 5mΩ)
CSOP - CSON Pins	EN_ADC_IBAT_ICHG	IBAT_CHG	64mA (RSENSE_BAT = 10mΩ)
Differential	0x35[2]	0x24[14:8]	128mA (RSENSE_BAT = 5mΩ)
VSYS Pin	EN_ADC_VSYS	VSYS	64mV
	0x35[1]	0x26[15:8]	Offset is 2.88V
CSON Pin	EN_ADC_VBAT	VBAT	64mV
	0x35[0]	0x26[7:0]	Offset is 2.88V

15.6.2 IBUS and IBAT Pins Current Monitor

The RT9478M has two current sense amplifiers to monitor input current during forward mode or output current during OTG mode via the IBUS pin, and battery charge/discharge current via the IBAT pin.

The IBUS pin voltage is 20x (default) or 40x of the differential voltage across the CSIP pin and CSIN pin, and the gain is selected by the IBUS_GAIN (0x12[4]) register. The IBAT pin voltage is 8x or 16x (default) of the differential voltage across the CSOP pin and CSON pin, and the gain is selected by the IBAT_GAIN register bit (0x12[3]). The IBUS pin output is enabled during forward mode or OTG mode and the IBAT pin output is enabled by the EN_IBAT_PIN (0x30[15]) register bit. If the ICHG_IDCHG_DIR (0x31[6]) register bit is set to 0 (default), the IBAT pin outputs the battery discharge current monitor. If the ICHG_IDCHG_DIR is set to 1, it outputs the battery charge current monitor. A maximum 100pF capacitor can be connected to the IBUS and IBAT pins for decoupling high-frequency noise.

The IBAT pin output is not enabled in low power mode even if the EN_IBAT_PIN register is set to 1.

15.7 Independent Comparator

The RT9478M features a comparator with one input at the CMPIN pin and one output at the CMPOUT pin. The comparator's threshold voltage can be set to either 1.2V (default) or 2.3V using the CMP_REF (0x30[7]) register. The threshold is fixed at 1.2V in low power mode. This feature is enabled by setting the EN_CMP (0x32[2]) register bit to 1 (default).

Output polarity is determined by the CMP_POL (0x30[6]) register, where 0 represents CMPOUT is low when CMPIN is above the internal threshold (default) and 1 represents CMPOUT is low when CMPIN is below the internal threshold. The deglitch time for the comparator can be selected from 5μ s, 2ms, 20ms, and 5s by the CMP_DEG (0x30[5:4]) register.

15.8 OTG Mode (USB On-The-Go)

15.8.1 OTG Mode

The RT9478M supports USB On-The-Go (OTG) functionality to deliver power from the battery to a USB-C port. In this mode, the buck-boost converter operates in reverse direction. The OTG output voltage is set by the VOTG_REG (0x3B[13:2]) register, and the current limit is set by the IOTG_REG (0x3C[14:8]) register. Both voltage and current settings must be greater than 0 to enable OTG functionality.

To enter OTG mode, the EN_LPWR (0x12[15]) must be set to 0. The device enters OTG mode 15ms after the

OTG_VAP pin voltage is pulled high, the EN_OTG (0x32[12]) register is set to 1, and the OTG_VAP_MODE (0x32[5]) register is set to 1 (default). When the device enters OTG mode, the IN_OTG (0x20[8]) register bit is set to 1.

15.8.2 Fast Role Swap (FRS)

The USB-C PD specification includes a Fast Role Swap (FRS) feature, which enables a quick transition from the power sink role to the power source role. This ensures that power is provided to accessories on the bus input without a voltage drop when the original power source is disconnected. In accordance with the USB-C PD specification, the device is capable of providing 5V within $150\mu s$ after the bus voltage falls below 4.75V.

If the EN_FRS register (0x37[0]) is set to 1 and EN_LPWR (0x12[15]) is set to 0, the buck-boost converter operates regardless of whether the bus input voltage is present or not. The OTG_VAP_MODE (0x32[5]) register must be set to 1 (default), and the EN_OTG (0x32[12]) register will automatically be set when the EN_FRS register (0x37[0]) is set to 1. Do not set EN_FRS while OTG mode (when EN_OTG is already set to 1).

The EN_FRS will be reset to 0 if the EN_HIZ (0x32[15]) register is set to 1.

15.9 Vmin Active Protection (VAP)

In performance mode (0x12[15] = 0), system peak load may cause a battery voltage drop due to battery internal impedance, and the system voltage also drops. Vmin Active Protection (VAP) feature supports this intermittent system voltage drop. In VAP mode, the buck-boost converter runs in reverse mode to charge the input bus bulk capacitor to store energy. Once the system voltage drops below the threshold, system voltage is supplied from the input side using stored energy.

15.10 HiZ Mode

The device enters HiZ mode if the ILIM_HIZ pin is driven low or the EN_HIZ (0x32[15]) register is set to 1 when the bus power is connected. In this mode, the buck-boost converter stops.

The device does not enter HiZ mode in battery-only operation, even in OTG or FRS.

The behavior of the battery MOSFET is controlled by the BATFETOFF_HIZ (0x32[1]) register. If BATFETOFF_HIZ is set to 1, the battery MOSFET is turned off in HiZ mode.

Setting the EN_HIZ register bit to 1 automatically resets the EN_FRS (0x37[0]) register to 0 (default).

15.11 Learn Mode

The device enters learn mode if the EN_LEARN (0x12[5]) register is set to 1 when the input bus voltage and battery voltage are present. In this mode, the buck-boost converter stops.

To exit learn mode, set EN_LEARN to 0 or pull the CELL_BATPRES pin low.

15.12 Force Converter Off Mode

The device enters force converter off mode when the EN_FORCE_CONV (0x30[3]) register is set to 1 and the CMPOUT pin is low. In this mode, the buck-boost converter stops, the FORCE_CONV_OFF_FLT (0x20[2]) register is set to 1, and the CHG_OK signal is driven low.

The FORCE_CONV_OFF_FLT is not cleared until the host reads it.

To exit force converter off mode, set EN_FORCE_CONV to 0. The device does not exit force converter off mode by unplugging the bus voltage.

15.13 Processor Hot (PROCHOT)

15.13.1 Processor Hot (PROCHOT) Overview

The RT9478M features a PROCHOT pin that notifies an overload of the load device, such as a CPU. Refer to Table 6 for monitoring events, enable bits, and status registers. Each monitor can be enabled individually.

Table 6							
Monitor Event	Enable Register	Status Register					
Input Current: Critical	PP_ICRIT (0x34[5])	ICRIT_PP_STAT (0x21[5])					
Input Current: Nominal	PP_INOM (0x34[4])	INOM_PP_STAT (0x21[4])					
Battery Discharge Current: Low (IDCHG1)	PP_IDCHG1 (0x34[3])	IDCHG1_PP_STAT (0x21[3])					
Battery Discharge Current: High (IDCHG2)	PP_IDCHG2 (0x36[2])	IDCHG2_PP_STAT (0x36[1])					
System Undervoltage	PP_VSYS (0x34[2])	VSYS_PP_STAT (0x21[2])					
Input Bus Voltage (VAP mode)	PP_VBUS_VAP (0x36[9])	VBUS_VAP_PP_STAT (0x36[8])					
VAP Exit		EXIT_VAP_PP_STAT (0x21[8])					
Input Bus Power Removal	PP_VBUSOK (0x34[0])	VBUSOK_PP_STAT (0x21[0])					
Battery Removal	PP_BATGONE (0x34[1])	BATGONE_PP_STAT (0x21[1])					
Entering MIVR	PP_MIVR (0x34[7])	MIVR_PP_STAT (0x21[7])					
Independent Comparator	PP_COMP (0x34[6]) EN_PROCHOT_LPWR (0x30[14])	COMP_PP_STAT (0x21[6])					

All triggers are not active in low power mode, except for the low power independent comparator. VAP Exit is always enabled in VAP Mode. If this PROCHOT is triggered, the $\overrightarrow{PROCHOT}$ pin generates a pulse with a minimum width, except in the case of PP_MIVR and EXIT_VAP. The minimum width can be selected from 100µs, 1ms, 5ms, and 10ms (default) by the PROCHOT_WIDTH (0x21[13:12]) register. If the EN_PROCHOT_EXT (0x21[14]) register is set to 1, the $\overrightarrow{PROCHOT}$ pin remains low until the host writes a 0 to the PROCHOT_CLR (0x21[11]) register.

Each status register bit is latched to 1 until the host reads it, except for PP_MIVR and EXIT_VAP. The host needs to write 0 to clear MIVR_PP_STAT and EXIT_VAP_PP_STAT.

15.13.2 Input Overcurrent PROCHOT (INOM, ICRIT)

When the input current exceeds the threshold, the PROCHOT pin is asserted. There are two thresholds: INOM and ICRIT. This feature is enabled by the PP_INOM (0x34[4]) and PP_ICRIT (0x34[5]) register bits.

For INOM PROCHOT, the threshold is 110% of the IAICR1, which is the IAICR (0x22[14:8]) register value. The deglitch time can be selected from 1ms (default) or 60ms by the INOM_DEG (0x33[1]) register.

For ICRIT PROCHOT, the threshold is 110% of IAICR2. IAICR2 is set between 110% and 450% of IAICR1 according to the IAICR2 (0x33[15:11]) register. The default is 150%. The deglitch time can be selected from 15µs, 100µs (default), 400µs, and 800µs by the ICRIT_DEG (0x33[10:9]) register.

The IAICR resister is not allowed to write by the host. Refer to <u>15.5.2 Average Input Current Regulation (AICR)</u> for IAICR1 setting.

15.13.3 Battery Discharge Current PROCHOT (IDCHG1, IDCHG2)

When the battery discharge current exceeds the threshold, the PROCHOT pin is asserted. There are two thresholds: IDCHG1 and IDCHG2. This feature is enabled by the PP_IDCHG1 (0x34[3]) or PP_IDCHG2 (0x36[2]) register bit and is not enabled in low power mode.

IDCHG1 is set from 0A to 32.256A in 512mA steps by the IDCHG_TH1 (0x34[15:10]) register. The deglitch time can be selected from 78ms, 1.25s (default), 5s, and 20s by the IDCHG_DEG1 (0x34[9:8]) register.

IDCHG2 is set from 125% to 400% of IDCHG1 by the IDCHG_TH2 (0x36[5:3]) register. The deglitch time can be selected from 100µs, 1.6ms (default), 6ms, and 12ms by the IDCHG_DEG2 (0x36[7:6]) register.

15.13.4 System Undervoltage PROCHOT (VSYS)

When the V_{SYS} drops below the threshold, the **PROCHOT** pin is asserted. The threshold is set by the VSYS_TH2 (0x37[7:2]) register. This feature is enabled by the PP_VSYS (0x34[2]) register.

If the EN_VSYSTH2_FOLLOW_VSYSTH1 (0x37[1]) register is set to 1, the VSYS_TH1 (0x33[7:2]) register determines the VSYS_TH2 threshold.

15.13.5 Input Bus Undervoltage in VAP PROCHOT (VBUS_VAP)

In VAP mode, the PROCHOT pin is asserted when V_{BUS} drops below the threshold. This feature is enabled by the PP_VBUS_VAP (0x36[9] register bit.

The threshold is set by the VBUS_VAP_TH register (0x37[15:9]).

15.13.6 Exit VAP PROCHOT (EXIT_VAP)

When the charger exits from VAP mode, the PROCHOT pin is asserted. This feature has no enable register and is always enabled in VAP mode. The host needs to write 0 to clear the EXIT_VAP_PP_STAT (0x21[8]) register bit.

15.13.7 Input Power Source Removal PROCHOT (VBUSOK)

When the VBUS voltage drops below the threshold, the PROCHOT pin is asserted. This feature is enabled by the PP_VBUSOK (0x34[0]) register bit.

The threshold is VBUS_CONVEN_F (3.5V typical)

15.13.8 Battery Removal (BATGONE)

When battery removal is detected, the **PROCHOT** pin is asserted. This feature is enabled by the PP_BATGONE (0x34[1]) register bit.

This occurs when the CELL_BATPRES pin voltage drops below the VCELL_BATPREZ_F threshold.

15.13.9 MIVR PROCHOT

When the device enters MIVR mode, the PROCHOT pin is asserted. This feature is enabled by the PP_MIVR

(0x34[7]) register bit.

The MIVR PROCHOT bus voltage threshold can be selected. If the LOWER_PROCHOT_MIVR (0x33[0]) register bit is set to 1 (default), the threshold can be selected from 83% or 91% of the MIVR threshold using the PROCHOT_MIVR_80_90 (0x33[8]) register bit and its minimum value is VBUS_CONVEN_F. The host needs to write 0 to clear the MIVR_PP_STAT (0x21[7]) register bit.

15.13.10 Comparator Output PROCHOT

When the CMPUOT goes low, the **PROCHOT** pin is asserted.

This feature is enabled by the PP_COMP (0x34[6]) register bit, except in low power mode with EN_LPWR (0x12[15]) = 1.

In low power mode, this feature is enabled by setting the EN_PROCHOT_LPWR (0x30[14]) register bit to 1 with EN_LPWR (0x12[15]) =1.

For comparator configuration, refer to <u>15.7 Independent Comparator</u>.

15.14 Protection

15.14.1 Bus Overvoltage Protection (BUSOVP)

When the V_{BUS} exceeds V_{BUS_OVP_R} (typically 26.8V) with a 100 μ s deglitch time, overvoltage protection (BUSOVP) is triggered. In BUSOVP, the buck-boost converter stops, the BUSOVP_FLT (0x20[7]) register bit is asserted, and the CHG_OK pin is pulled down.

Once the bus voltage drops below $V_{BUS_OVP_F}$ (typically 25.8V) with a 1ms deglitch time, the buck-boost converter resumes, and the CHG_OK pin is asserted again. The BUSOVP_FLT bit is cleared when the host reads it.

15.14.2 Battery Discharge Overcurrent Protection (BATOCP)

When the IBAT discharge exceeds the threshold, the battery discharge overcurrent protection (BATOCP) is triggered. This feature is enabled by the EN_BATOC (0x31[1]) register bit.

The threshold is either 133% or 200% of IDCHG2, according to the BATOC_VTH (0x31[0]) register bit. IDCHG2 is set from 125% to 400% of IDCHG1 by the IDCHG_TH2 register (0x36[5:3]). The IDCHG1 is set from 0A to 32.256A in 512mA increments by the IDCHG_TH1 (0x34[15:10]) register.

For example, if the IDCHG_TH1 register is set to 0x10 (16 in decimal), IDCHG1 is set to 8.192A. If the IDCHG_TH2 register is set to 0x01 (001), which indicates 150%, IDCHG2 become $8.192 \times 150\% = 12.288A$. Under this setting, if BATOC_VTH is set to 1, which indicates 200%, the bus battery discharge overcurrent threshold is $12.288 \times 200\% = 24.576A$.

The battery discharge overcurrent detection has a $250 \mu s$ deglitch time.

In the case where R_{SENSE_BAT} is $10m\Omega$, the BATOCP threshold should not exceed 40A. In the case where R_{SENSE_BAT} is $5m\Omega$, the BATOCP threshold should not exceed 80A.

If BATOCP is triggered, the BATOCP_FLT (0x20[6]) register bit is asserted and the buck-boost converter stops.

Once the battery discharge current drops below the threshold with a 250ms deglitch time, the buck-boost converter restarts but the BATOCP_FLT bit is cleared when the host reads it.

15.14.3 Battery Overvoltage Protection (BATOVP)

When the CSON pin voltage exceeds VBAT_OVP_R, battery overvoltage protection (BATOVP) is triggered. The threshold is 104% of the VBAT_REG (0x15[14:3]) registers value. If BATOVP is triggered in charging mode, the buck-boost converter stops but the ICHG_CTRL (0x14[12:6]) register remains unchanged. If BATOVP is triggered

not in charging mode, the buck-boost converter does not stop. In either case, a 40mA discharge current, IDISCHG_BAT_OVP, is drawn from the VSYS pin.

Once the CSON pin voltage drops below the threshold, the converter resumes. This falling threshold is 102% of the VBAT_REG register value

This protection does not have an indicator register bit.

15.14.4 Bus Overcurrent Protection (BUS_OCP1)

When the IBUS exceeds the first threshold, BUS_OCP1 is triggered. This feature is enabled only if the EN_IBUS_OCP1 (0x31[3]) register bit is set to 1. The first threshold is selected as either 133% or 200% of IAICR2, according to the IBUS_OCP1_TH (0x31[2]). IAICR2 is set between 110% and 450% of IAICR1 according to the IAICR2 (0x33[15:11]) register with the default being 150%. IAICR1 is defined by the IAICR (0x22[14:8]) register value.

For example, if the IAICR register is set to 0x3C (60 in decimal) and RSENSE_IN is 10 m Ω , IAICR1 is set to 3.0A. If the IAICR2 register is set to 0x09 (01001), which indicates 150%, IAICR2 become 3.0 × 150% = 4.5A. Under this setting, if IBUS_OCP1_TH is set to 1, which indicates 200%, the bus over current first threshold is 4.5 × 200% = 9.0A.

If BUS_OCP1 is triggered, the converter stops after a 250μ s deglitch time and the BATOCP_FLT (0x20[6]) register bit is asserted. Once the overcurrent is resolved, the converter resumes switching automatically after a 250ms deglitch time.

15.14.5 Critical Bus Overcurrent Protection (BUS_OCP2)

When the I_{BUS} exceeds the second threshold, BUS_OCP2 is triggered. The threshold depends on the IBUS_OCP2_TH register (0x31[4]) bit, the RSNS_IN (0x30[11]) register, the system voltage and the battery voltage status. Refer to <u>Table 7</u> for the threshold of CSIP – CSIN voltage. If BUS_OCP2 is triggered, the converter stops immediately.

Once the input current drops below the threshold, the converter resumes switching automatically after a 16ms deglitch time. If a system undervoltage occurs (VSYS < VSYS_UVLO_R or VCSON < VBAT_UVLO_R) simultaneously, the limit is reduced.

IBUS_OCP2_TH (0x31[4])	RSNS_IN (0x30[11])	Vsys < Vsys_uvlo_r or Vcson < Vbat_uvlo_r	CSIP – CSIN Differential Voltage
0	0 (10mΩ)	No	280mV
0	1 (5mΩ)	No	200mV
1	0 (10mΩ)	No	150mV
1	1 (5mΩ)	No	100mV
0	Х	Yes	150mV
1	Х	Yes	90mV

Table 7. IBUS_OCP2 Threshold

15.14.6 MOSFET Overcurrent Protection (Q2_OCP)

When Q2 is turned on and the V_{DS} of Q2 voltage exceeds the threshold, Q2_OCP is triggered. The threshold is selected from 210mV or 150mV (default) by the Q2_OCP (0x31[5]) register bit. In the case of system voltage or

battery undervoltage, where VSYS < VSYS_UVLO_R or VCSON < VBAT_UVLO_R, this threshold is reduced to 60mV or 45mV, respectively.

15.14.7 Inductor Average Overcurrent Protection (IL_AVG)

When the inductor average current exceeds the threshold, Inductor Average Overcurrent (IL_AVG) is triggered and the inductor average current is clamped. The threshold is selected from 6A, 10A,15A (default) or disabled by the IL_AVG (0x32[4:3]) register.

15.14.8 System Overvoltage Protection (SYSOVP)

If the VSYS exceeds the threshold, system overvoltage protection (SYSOVP) is triggered. The threshold is selected by the VSYS_OVP (0x40[14:12]) register. By default, the threshold depends on the cell battery count. Refer to Table 8 for overvoltage thresholds.

VSYS_OVP (0x40[14:12])	Cell Count	System Overvoltage Threshold
	2s	12V
000 (default)	3s, 4s	19.5V
	Battery Removal	25V
001		15V
010		16V
011		20V
100	Х	21V
101		22V
110		23V
111		24V

Table 8. System OvervoltageThreshold

If SYSOV is triggered, the buck-boost converter stops, the SYSOVP_FLT (0x20[4]) register bit is asserted, and a 40mA current, IDISCHG_SYS_OVP is pulled from the VSYS pin. Once the VSYS drops below the threshold and SYSOVP_FLT is cleared by the host, the buck-boost converter resumes.

15.14.9 System Undervoltage Protection (SYSUVP)

If the Vsys goes below the threshold, system undervoltage protection (SYSUVP) is triggered. This feature can be enabled by setting the ENZ_VSYS_UVP (0x12[6]) register to 0 (default).

The threshold is selected from 3.65V (default) to 8.0V by the VSYS_UVP (0x36[15:3]) register. SYSUVP detection has a 10μ s deglitch time. If SYSUVP is triggered.

The behavior of the buck-boost converter depends on the VSYS_UVP_NO_HICCUP (0x36[10]) register setting.

If VSYS_UVP_NO_HICCUP is set to 1, the buck-boost converter is latched off after SYSUVP is detected and the SYSUVP_FLT (0x20[3]) register bit is asserted.

If VSYS_UVP_NO_HICCUP is set to 0, the buck-boost converter stops for 500ms and then tries to restart for 10ms. If Vsys does not exceed the threshold during the trial, the buck-boost converter stops for 500ms again. If this restart trial occurs seven times in 90 seconds, the buck-boost converter is latched off and the SYSUVP_FLT register bit is asserted. During SYSUVP hiccup, AICR is always enabled regardless of the EN_AICR setting. The IAICR value is temporarily set to 0.5A.

Once the SYSUVP is cleared by the host, the buck-boost converter resumes.

15.14.10 OTG Output Overvoltage Protection (OTGOVP)

If the VOTG voltage exceeds the threshold in OTG mode, OTG output overvoltage protection (OTGOVP) is triggered with a 10ms deglitch time. The threshold is 110% of the VOTG_REG (0x3B[13:2]) register setting. If OTGOVP is triggered, the buck-boost converter stops, the OTGOVP_FLT (0x20[1]) register bit is asserted, the EN_OTG (0x32[12]) register is cleared to 0, and the device exits from OTG mode. The OTGOVP_FLT is cleared when the host reads it.

15.14.11 OTG Output Undervoltage Protection (OTGUVP)

If the Votg voltage drops below the threshold in OTG mode, OTG output undervoltage protection (OTGUVP) is triggered with a 7ms deglitch time. The threshold is 85% of the VOTG_REG (0x3B[13:2]) register setting. If OTGUVP is triggered, the buck-boost converter stops, the OTGUVP_FLT (0x20[0]) register bit is asserted, and the EN_OTG (0x32[12]) register is cleared to 0 and the device exits from OTG mode. The OTGUVP_FLT is cleared when the host reads it.

15.14.12 Over-Temperature Protection (OTP)

If the junction temperature of the device exceeds 140°C, the over-temperature protection (OTP) is triggered. If OTP is triggered, the buck-boost converter stops and the OTP_FLT (0x21[10]) register bit is asserted. During OTP, the REGN LDO current limit is reduced to 24mA, and the battery MOSFET remains on. Once the temperature decreases below 125°C, the buck-boost converter and REGN LDO current limit resume.

15.14.13 Regulator Undervoltage Protection (REGNUVP)

If the REGN voltage falls below the threshold, regulator undervoltage protection (REGNUVP) is triggered. If REGNUVP is triggered, the buck-boost converter stops, and the A/D converter, current monitors, and power monitor are disabled. Once the REGN and VDDA voltage exceeds the threshold, these functions resume.

15.15 Other Features

15.15.1 Frequency Dithering

The RT9478M has a frequency dithering function to improve EMI performance. This feature is enabled by the DITHER_EN (0x36[12:11]) register bit. The dithering range is selectable from disable(00), $\pm 2\%$ (01), $\pm 4\%$ (10), or $\pm 6\%$ (11) of the center frequency.

15.15.2 Strong Gate Drive

The RT9478M has a two-step gate drive capability for the high-side MOSFET driver. By setting the DIS_STRGDRV register (0x12[8]) to 0, strong gate drive is enabled.

15.15.3 Out of Audio Operation (OOA)

Under light-load conditions, the charger operates in pulse frequency modulation (PFM) mode to improve efficiency. In PFM mode, the effective switching frequency decreases as the system load reduces. If the EN_OOA (0x12[10]) register is set to 1, the device operates in out-of-audio mode, and the minimum PFM frequency is limited to 20kHz to prevent audible noise.

15.15.4 Resetting Registers

If the RESET_REG (0x32[14]) register is set to 1, all register values are reset to their default values except for the

VMIVR (0x3D[13:6]). The VBAT_REG (0x15[14:3]) and the VSYS_MIN (0x3E[15:8]) revert to default values based on the CELL_BATPRES pin status.

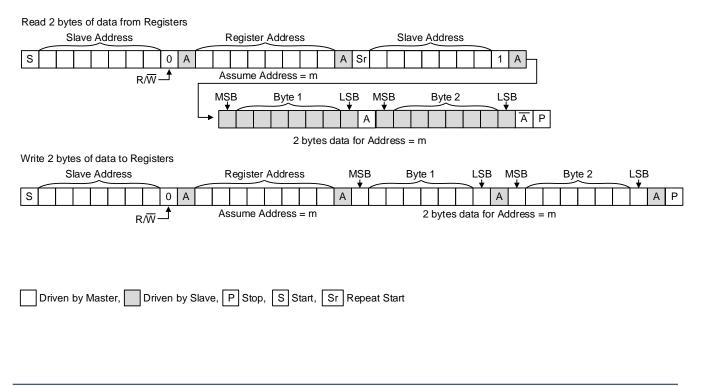
15.15.5 Auto Wakeup

If EN_AUTO_WAKEUP (0x30[0]) is set to 1 and VBAT is lower than the VSYS_MIN (0x3E[15:8]) setting value, the device charges the battery for 30mins with a 128mA charging current.

This automatic charging stops and EN_AUTO_WAKEUP resets to 0 in following cases:

- When the VBAT exceeds the VSYS_MIN setting value.
- The host writes a new charge current value higher than 0 to the ICHG_CTRL (0x14[12:6]).

If the host writes charge current value, the device goes to pre-charge operation.


Note that the WDTMR_ADJ (0x12[14:13]) register must be set to 0 to disable watchdog timer.

15.15.6 Discharge for Shipping Mode

If EN_SHIP_DCHG (0x30[1]) is set to 1, current is sunk from each CSOP pin and CSON pin. Each pin sinks 10mA. This discharge continues for 140ms. When 140ms expire, the discharge stops and EN_SHIP_DCHG automatically resets to 0.

15.16 SMBus Communication Interface

The RT9478M uses an SMBus-compatible interface by a 2-wire line (SCL and SDA) to communicate with the host. The SCL and SDA pins are open drain, which need to be connected to the supply voltage via pull-up resistors. The device operates as an SMBus slave device with a 7-bit address of 0x09 for option code A and 0x6B for option code B, supporting up to 400kHz. To start an SMBus communication, begin with the START (S) condition, and then the host sends the slave address. This address is 7-bit long, followed by an eighth bit which is a data direction bit (RW). The second byte is the register address. Following bytes contain data for the selected register. End with the STOP (P) condition.

16 Application Information

(<u>Note 9</u>)

16.1 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_{J(MAX)}, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

$\mathsf{P}\mathsf{D}(\mathsf{M}\mathsf{A}\mathsf{X}) = \left(\mathsf{T}\mathsf{J}(\mathsf{M}\mathsf{A}\mathsf{X}) - \mathsf{T}\mathsf{A}\right) / \,\theta\mathsf{J}\mathsf{A}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-32L 4x4 package, the thermal resistance, θ_{JA} , is 35.43°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at T_A = 25°C can be calculated as below:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (35.43^{\circ}C/W) = 2.82W$ for a WQFN-32L 4x4 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curve in Figure 7 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

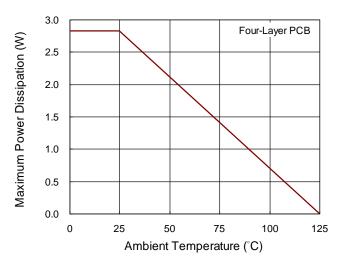


Figure 7. Derating Curve of Maximum Power Dissipation

16.2 Register to be Reset by Input Power is Unplugged

Register bits shown in <u>Table 9</u> are reset to 0 when the input bus voltage drops below VBUS_CONVEN_F.

Table 9					
Register Name	Address	Note			
ICHG_CTRL	0x14[12:6]				
SYSOVP_FLT	0x20[4]	Reset to 0 only in case of VSYS overvoltage being triggered while VBUS is available.			
EN_PKPWR_AICR	0x31[13]				
EN_PKPWR_VSYS	0x31[12]				
EN_AICC	0x32[11]				
AICR_HOST	0x3F[14:8]				

-

16.3 Register to be Reset by the CELL_BATPRES Pin Pulled Down

Register bits shown in <u>Table 10</u> are reset to 0 when the CELL_BATPRES pin is pulled down.

Table 10					
Register Name	Address	Note			
ICHG_CTRL	0x14[12:6]				
EN_LEARN	0x12[5]				

Note 9. The information provided in this section is for reference only. The customer is solely responsible for designing, validating, and testing any applications incorporating Richtek's product(s). The customer is also responsible for applicable standards and any safety, security, or other requirements.

17 Functional Register Description

Table 11. SMBus Address

Option Code	7-bit Address
A	0x09
В	0x6B

Table 12. Register Type

Туре	Abbreviation	Description		
Read Only	R	This bit can be read by software. Writes have no effect.		
Read/Write	RW	This bit can be read or written by host.		
Read Once Clear	RWC	This bit can be read by software and resets to 0.		

Table 13. Register List

Address	Register Name	Default	Туре	Description
0x12	ChargeOption0	0xE30E	RW	
0x14	ChargeCurrent	0x0000	RW	
0x15	ChargeVoltage	0x0000	RW	
0x20	ChargerStatus	0x0000	R, RWC	
0x21	ProchotStatus	0xB800	R, RW, RWC	
0x22	AICR	0x4100	R	
0x23	ADCVBUS	0x0000	R	
0x24	ADCIBAT	0x0000	R	
0x25	ADCIINCMPIN	0x0000	R	
0x26	ADCVSYSVBAT	0x0000	R	
0x30	ChargeOption1	0x3300	RW	
0x31	ChargeOption2	0x00B7	RW	
0x32	ChargeOption3	0x0634	RW	
0x33	ProchotOption0	0x4A81	RW	
0x34	ProchotOption1	0x41A0	RW	
0x35	ADCOption	0x2000	RW	
0x36	ChargeOption4	0x2048	R, RW, RWC	
0x37	VminActiveProtection	0x0A6C	RW	
0x3B	OTGVoltage	0x09C4	R, RW	
0x3C	OTGCurrent	0x3C00	R, RW	
0x3D	MIVR	0x0000	R, RW	
0x3E	VsysMin	0x0000	R, RW	
0x3F	AICRHost	0x4100	R, RW	
0x40	AuxFunction	0x8100	R, RW	
0xFE	MfgID	0x001E	R	
0xFF	DeviceID	0x001C	R	

Table 14. ChargeOption0

Address:	0x12
/	0/(12

Description: Configure operation options

Description: Configure operation options								
Bit	15	14	13	12	11	10	9	8
Field	EN_LPWR	WATCH	IDOG	AICR_ AUTO_ DIS	OTG_ON_ CHGOK	EN_OOA	PWM_ FREQ	DIS_ STRGDRV
Default	1	1	1	0	0	0	1	1
Туре	RW	RV	V	RW	RW	RW	RW	RW
Bit	7	6	5	4	3	2	1	0
Field	EN_CMP_ LATCH	ENZ_ VSYS_ UVP	EN_ LEARN	IBUS_ GAIN	IBAT_GAIN	EN_LDO	EN_AICR	CHG_ INHIBIT
Default	0	0	0	0	1	1	1	0
Туре	RW	RW	RW	RW	RW	RW	RW	RW

Bit	Bit Name	Reg Rest	Туре	Description
15	EN_LPWR	1	RW	Enable low power mode. This bit is effective only when the device is in battery-only mode. 0: Disable 1: Enable (default)
14:13	WATCHDOG[1:0]	11	RW	Set the WDT (watchdog timer) for battery charge. The WDT is reset by writing any value to either reg 0x14 or reg 0x15. Once the WDT expires, reg 0x14 is reset to 0. 00: Disable WDT 01: 5s 10: 88s 11: 175s (default)
12	AICR_AUTO_DIS	0	RW	AICR auto disables when the CELL_BATPRES pin is pulled down. 0: Disable this function. AICR is not disabled when CELL_BATPRES goes LOW. (default) 1: Enable this function. AICR is disabled when CELL_BATPRES goes LOW.
11	OTG_ON_CHGOK	0	RW	Add OTG to CHRG_OK. Drive CHRG_OK high when the device is in OTG mode 0: Disable (default) 1: Enable
10	EN_OOA	0	RW	Out of audio function. 0: Disable (default) 1: Enable
9	PWM_FREQ	1	RW	Switching frequency selection. 0: 1200kHz 1: 800kHz (default)

Bit	Bit Name	Reg Rest	Туре	Description
8	DIS_STRGDRV	1	RW	Disable strong gate drive. Configure the high-side MOSFET to turn on with strong gate drive. 0: Enable strong gate drive 1: Disable strong gate drive (default)
7	EN_CMP_LATCH	0	RW	Independent comparator output latch. 0: The independent comparator output does not latch when it is low. (default) 1: The independent comparator output does latch when it is low. The host can clear the COMPOUT pin by setting this REG 0x12[7] to 0. If enabled in the PP_COMP (0x34[6]) = 1, COMP_PP_STAT (0x21[6]) remains 1b after being triggered until read by host and cleared.
6	ENZ_VSYS_UVP	0	RW	VSYS undervoltage protection (VSYSUVP) enable (Negative Logic) 0: Enable (default) 1: Disable
5	EN_LEARN	0	RW	Learn mode enable. When enabled, the device enters learn mode. 0: Disable (default) 1: Enable
4	IBUS_GAIN	0	RW	Bus current sense pin (CSIP – CSIN) to IBUS output amplifier gain. 0: x20 (default) 1: x40
3	IBAT_GAIN	1	RW	Battery current sense pin (CSOP – CSON) to IBAT output amplifier gain. 0: x8 1: x16 (default)
2	EN_LDO	1	RW	LDO charging enable. Controls battery charge current if the battery voltage is less than VSYS_MIN. 0: Disable; BATFET is fully turned on and the charge current is set by the buck-boost regulator. 1: Enable; battery charge current is clamped at 384mA by LDO charging. (default)
1	EN_AICR	1	RW	Enable AICR. This bit is automatically set to 0 if AICR_AUTO_DIS (0x12[12]) is enabled and CELL_BAT_BATPRES goes to 0. 0: Disable 1: Enable (default)
0	CHG_INHIBIT	0	RW	Charge inhibit. If enabled, battery charging is stopped. 0: Disable (default) 1: Enable

49

RICHTEK

Table 15. ChargeCurrent

Address: 0x14 Description: Set the battery charge current								
Bit	15	14	13	12	11	10	9	8
Field	Reserved			ICHG_CTRL				
Default	0	0	0	0	0	0	0	0
Туре	R			RW				
Bit	7	6	5	4	3	2	1	0
Field	ICHG_	CTRL		Reserved				
Default	0	0	0	0	0	0	0	0
Туре	RW			R				

Bit	Bit Name	Default	Туре	Description
15:13	Reserved	000	R	Reserved
12:6	ICHG_CTRL [6:0]	0000000	RW	Charging current setting in 7 bits; LSB = 64mA. (RSENSE_BAT = 10m Ω), 128mA (RSENSE_BAT = 5m Ω)
5:0	Reserved	000000	R	Reserved

Table 16. ChargeVoltage

	Address: 0x15 Description: Set the battery charge termination voltage								
Bit	15	14	13	12	11	10	9	8	
Field	Reserved				VBAT_REG				
Default	0	0	0	0	0	0	0	0	
Туре	R				RW				
Bit	7	6	5	4	3	2	1	0	
Field			VBAT_REG				Reserved		
Default	0	0	0	0	0	0	0	0	
Туре	RW						R		

Bit	Bit Name	Default	Туре	Description
15	Reserved	0	R	Reserved
14:3	VBAT_REG [11:0]	00000000 0000	RW	Battery charge termination voltage setting in 12 bits: LSB = 8mV. The effective range is 5.0V (0x271) to 19.2V (0x960). Writing values outside of this range will be ignored.
2:0	Reserved	000	R	Reserved

Table 17. ChargerStatus

Address:	0x20
----------	------

Description: Charger status indicator

Description: Charger status indicator								
Bit	15	14	13	12	11	10	9	8
Field	VBUS_PG	AICC_ DONE	IN_VAP	IN_MIVR	IN_AICR	IN_FCHG	IN_PCHG	IN_OTG
Default	0	0	0	0	0	0	0	0
Туре	R	R	R	R	R	R	R	R
Bit	7	6	5	4	3	2	1	0
Field	BUSOVP_ FLT	BATOCP _FLT	BUSOCP1 _FLT	SYSOVP _FLT	SYSUVP _FLT	FORCE_ CONV_ OFF_FLT	OTGOV P_FLT	OTGUVP _FLT
Default	0	0	0	0	0	0	0	0
Туре	RWC	RWC	RWC	RWC	RWC	RWC	RWC	RWC

Bit	Bit Name	Default	Туре	Description
15	VBUS_PG	0	R	VBUS status. 0: VBUS is not present (default) 1: VBUS is present
14	AICC_DONE	0	R	Adaptive Input Current Control (AICC) is done. 0: AICC is not completed (default) 1: AICC completed
13	IN_VAP	0	R	0: Charger is not in VAP mode (default) 1: Charger is in VAP mode
12	IN_MIVR	0	R	0: Charger is not in MIVR. (default)1: Charger is in MIVR during forward mode or in voltage regulation during OTG mode.
11	IN_AICR	0	R	0: Charger is not in AICR. (default) 1: Charger is in AICR during forward mode or IOTG_CC is hit during OTG mode.
10	IN_FCHG	0	R	0: Charger is not in fast charge (default) 1: Charger is in fast charge
9	IN_PCHG	0	R	0: Charger is not in pre-charge (default) 1: Charger is in pre-charge
8	IN_OTG	0	R	0: Charger is not in OTG (default) 1: Charge is in OTG
7	BUSOVP_FLT	0	RWC	0: No fault (default) 1: VBUS OV This bit is cleared to 0 when the register is read.
6	BATOCP_FLT	0	RWC	 Fault indicator for BATOC only during normal operation. 0: No fault (default) 1: BATOC is triggered This bit is cleared to 0 when the register is read.
5	BUSOCP1_FLT	0	RWC	0: No fault (default) 1: BUS OC This bit is cleared to 0 when the register is read.

RICHTEK

Bit	Bit Name	Default	Туре	Description
4	SYSOVP_FLT	0	RWC	0: No fault (default) 1: SYS OVP This bit needs to be set to 0 to be cleared.
3	SYSUVP_FLT	0	RWC	0: No fault (default) 1: SYS UVP This bit needs to be set to 0 to be cleared.
2	FORCE_CONV_ OFF_FLT	0	RWC	0: No fault (default) 1: Force converter off triggered (when FORCE_CONV_OFF (0x30[3] = 1) This bit is cleared to 0 when the register is read.
1	OTGOVP_FLT	0	RWC	0: No fault (default) 1: OTG OVP This bit is cleared to 0 when the register is read.
0	OTGUVP_FLT	0	RWC	0: No fault (default) 1: OTG UVP This bit is cleared to 0 when the register is read.

Table 18. ProchotStatus

Add	ress:	0x21

inti PROCHOT behavior settir d fault indicat

Description: PROCHOT behavior settings and fault indicator								
Bit	15	14	13	12	11	10	9	8
Field	Reserved	EN_PROC HOT_EXT	PROCHOT_WIDTH		PROCHO T_CLR	OTP_FL T	VAP_FAI L_STAT	EXIT_ VAP_PP_ STAT
Default	1	0	1	1	1	0	0	0
Туре	R	RW	R'	W	RW	R	RW	RW
Bit	7	6	5	4	3	2	1	0
Field	MIVR_PP_ STAT	COMP_ PP_STAT	ICRIT_ PP_STAT	INOM_ PP_ STAT	IDCHG1_ PP_STAT	VSYS_ PP_ STAT	BATGON E_PP_ STAT	VBUSOK _PP_ STAT
Default	0	0	0	0	0	0	0	0
Туре	RW	RWC	RWC	RWC	RWC	RWC	RWC	RWC

Bit	Bit Name	Default	Туре	Description
15	Reserved	1	R	Reserved
14	EN_PROCHOT_ EXT	0	RW	PROCHOT pulse extension 0: Disable (default) 1: Enable
13:12	PROCHOT_ WIDTH [1:0]	11	RW	PROCHOT minimum pulse width. 00: 100μs 01: 1ms 10: 5ms 11: 10ms (default)
11	PROCHOT_CLR	1	RW	PROCHOT clear. 0: Clear PROCHOT 1: Idle (default) Need to write 0 to reset PROCHOT if pulse extension is enabled (0x21[14] = 1).
10	OTP_FLT	0	R	Over-Temperature Protection (OTP). 0: OTP is not triggered (default) 1: OTP is triggered
9	VAP_FAIL_STAT	0	RW	If VAP exits due to VBUS experiencing 7 consecutive undervoltage events, not only can the VAP_FAIL_STAT assert, but the EXIT_VAP_PP_STAT can assert as well. 0: No fail (default) 1: In the VAP failure event, it is latched until the host writes 0.
8	EXIT_VAP_PP_ STAT	0	RW	If this bit is set to 1, the charger exits VAP in following conditions: Disabled by ACOV, BATUV (CSON < VBAT_OTGEN_F), OTG_VAP = "L" and OTG_VAP_MODE (0x32[5]) = 1. 0: PROCHOT_EXIT_VAP is not active (default) 1: PROCHOT_EXIT_VAP is active and latched until the host writes 0.

RICHTEK

Bit	Bit Name	Default	Туре	Description
7	MIVR_PP_STAT	0	RW	PROCHOT profile MIVR status bit 0: Not triggered (default) 1: Triggered, the PROCHOT pin remains low until the host writes this status bit to 0 when PP_MIVR = 1.
6	COMP_PP_STAT	0	RWC	PROCHOT profile CMPOUT status bit.0: Not triggered (default)1: TriggeredThis bit is cleared to 0 when the register is read.
5	ICRIT_PP_STAT	0	RWC	PROCHOT profile ICRIT status bit 0: Not triggered (default) 1: Triggered This bit is cleared to 0 when the register is read.
4	INOM_PP_STAT	0	RWC	PROCHOT profile INOM status bit.0: Not triggered (default)1: TriggeredThis bit is cleared to 0 when the register is read.
3	IDCHG1_PP_ STAT	0	RWC	PROCHOT profile IDCHG1 status bit. 0: Not triggered (default) 1: Triggered This bit is cleared to 0 when the register is read.
2	VSYS_PP_STAT	0	RWC	PROCHOT profile VSYS status bit.0: Not triggered (default)1: TriggeredThis bit is cleared to 0 when the register is read.
1	BATGONE_PP_ STAT	0	RWC	PROCHOT profile Battery Removal status bit.0: Not triggered (default)1: TriggeredThis bit is cleared to 0 when the register is read.
0	VBUSOK_PP_ STAT	0	RWC	PROCHOT profile Adapter Removal status bit.0: Not triggered (default)1: TriggeredThis bit is cleared to 0 when the register is read.

	Table 19. AICR								
	Address: 0x22 Description: Set AICR (Average Input Current Regulation) current								
Bit	15	14	13	12	11	10	9	8	
Field	Reserved		IAICR						
Default	0	1	0	0	0	0	0	1	
Туре	R				R				
Bit	7	6	5	4	3	2	1	0	
Field		Reserved							
Default	0	0	0	0	0	0	0	0	
Туре		R							

Bit	Bit Name	Default	Туре	Description
15	Reserved	0	R	Reserved
14:8	IAICR [6:0]	1000001	R	AICR current setting in 7 bits; LSB = 50mA (RSENSE_IN = 10m Ω), 100mA (RSENSE_IN = 5m Ω) Note: This register is read only. Write setting value to AICR_HOST (0x3F[14:8]).
7:0	Reserved	00000000	R	Reserved

Table 20. ADCVbus

	Address: 0x23 Description: VBUS voltage A/D conversion outputs							
Bit	15	14	13	12	11	10	9	8
Field	VBUS							
Default	0	0	0	0	0	0	0	0
Туре	R							
Bit	7	6	5	4	3	2	1	0
Field				Rese	erved			
Default	0	0	0	0	0	0	0	0
Туре		R						

Bit	Bit Name	Default	Туре	Description
15:8	VBUS [7:0]	00000000	R	VBUS A/D conversion output in 8 bits: LSB = 96mV, up to 24.48V
7:0	Reserved	00000000	R	Reserved

Г

RICHTEK

Table 21. ADClbat

Address Descript		charge and c	lischarge cur	rent A/D conv	version outpu	ts			
Bit	15	14	13	12	11	10	9	8	
Field	Reserved		IBAT_CHG						
Default	0	0	0	0	0	0	0	0	
Туре	R		R						
Bit	7	6	5	4	3	2	1	0	
Field	Reserved			I	BAT_DISCHO	3			
Default	0	0	0	0	0	0	0	0	
Туре	R	R							

Bit	Bit Name	Default	Туре	Description
15	Reserved	0	R	Reserved
14:8	IBAT_CHG [6:0]	000000	R	Battery charge current A/D conversion output in 7 bits: LSB = 64mA (0x30[10] RSNS_BAT = 0, RSENSE_BAT = 10m Ω), up to 8.128A LSB = 128mA (0x30[10] RSNS_BAT = 1, RSENSE_BAT = 5m Ω), up to 16.256A
7	Reserved	0	R	Reserved
6:0	IBAT_DISCHG [6:0]	0000000	R	Battery discharge current A/D conversion output in 7 bits: LSB = 256mA (0x30[10] RSNS_BAT = 0, RSENSE_BAT = 10m Ω), up to 20.48A LSB = 512mA (0x30[10] RSNS_BAT = 1, RSENSE_BAT = 5m Ω), up to 40.96A

RT9478M

Table 22. ADClinCMPin

Address Descript		rrent and Co	mparator Inpu	ut voltage A/I) conversion	outputs		
Bit	15	14	13	12	11	10	9	8
Field	IBUS							
Default	0	0	0	0	0	0	0	0
Туре	R							
Bit	7	6	5	4	3	2	1	0
Field				VCC	OMP			
Default	0	0	0	0	0	0	0	0
Туре	R							

Bit	Bit Name	Default	Туре	Description
15:8	IBUS [7:0]	0000000	R	BUS current A/D conversion output in 8 bits: LSB = 50mA (0x30[11] RSNS_IN = 0, RSENSE_IN = 10m Ω), up to 12.75A LSB = 100mA (0x30[11] RSNS_IN = 1, RSENSE_IN = 5m Ω), up to 25.5A
7:0	VCOMP [7:0]	0000000	R	The CMPIN pin voltage A/D conversion output in 8 bits: LSB = 8mV (0x35[13] ADC_FULLSCALE = 0), up to 2.04V LSB = 12mV (0x35[13] ADC_FULLSCALE = 1), up to 3.06V

Table 23. ADCVsysVbat

	Address: 0x26 Description: SYS voltage and battery voltage A/D conversion outputs								
Bit	15	14	13	12	11	10	9	8	
Field	VSYS								
Default	0	0	0	0	0	0	0	0	
Туре	R								
Bit	7	6	5	4	3	2	1	0	
Field				VB	AT				
Default	0	0	0	0	0	0	0	0	
Туре	R								

Bit	Bit Name	Default	Туре	Description
15:8	VSYS [7:0]	00000000	R	VSYS voltage A/D conversion output in 8 bits: LSB = 64mV, 2.88V to 19.2V
7:0	VBAT [7:0]	0000000	R	VBAT voltage A/D conversion output in 8 bits: LSB = 64mV 2.88V to 19.2V

Table 24. ChargeOption1

Address: 0x30

ŧ۲ **c** otic ntic

Description: Configure the operation options								
Bit	15	14	13	12	11	10	9	8
Field	EN_IBAT_ PIN	EN_ PROCHOT_ LPWR	Reserved		RSNS_IN	RSNS_BAT	Reserved	EN_FAST_ 5MOHM
Default	0	0	1	1	0	0	1	1
Туре	RW	RW	RW		RW	RW	RW	RW
Bit	7	6	5	4	3	2	1	0
Field	CMP_REF	CMP_POL	CMP_DEG		EN_ FORCE_ CONV	Reserved	EN_SHIP_ DCHG	EN_AUTO_ WAKEUP
Default	0	0	0	0	0	0	0	0
Туре	RW	RW	R	W	RW	R	RW	RW

Bit	Bit Name	Default	Туре	Description
15	EN_IBAT_PIN	0	RW	Enable IBAT analog output 0: Disable (default) 1: Enable
14	EN_PROCHOT_ LPWR	0	RW	Enable the external comparator and its PROCHOT in low power mode 0: Disable (default) 1: Enable
13:12	Reserved	11	R	Reserved
11	RSNS_IN	0	RW	Input sense resistor, RSENSE_IN setting 0: $10m\Omega$ (default) 1: $5m\Omega$
10	RSNS_BAT	0	RW	Battery sense resistor, RSENSE_BAT setting 0: $10m\Omega$ (default) 1: $5m\Omega$
9	Reserved	1	R	Reserved
8	EN_FAST_5MOHM	1	RW	Enable fast compensation to increase bandwidth under $5m\Omega$ RSENSE_IN (RSNS_IN = 1b) for input current up to 6.4A application. The fast compensation will only work when IBUS pin is configured to less than $160k\Omega$. 0: Disable 1: Enable (default)
7	CMP_REF	0	RW	Independent comparator's internal reference 0: 2.3V (default) 1: 1.2V
6	CMP_POL	0	RW	Independent comparator output polarity 0: Negative (default) 1: Positive

Bit	Bit Name	Default	Туре	Description		
5:4	4 CMP_DEG [1:0] 00 RW		RW	Independent comparator deglitch time. This setting is only applicable to the falling edge 00: 5μs (default) 01: 2ms 10: 20ms 11: 5s		
3	EN_FORCE_CON V	0	RW	Force converter off 0: Disable (default) 1: Enable		
2	Reserved	0	R	Reserved		
1	1 EN_SHIP_DCHG		RW	Discharge the CSOP and CSON pins for shipping mode 0: Disable (default) 1: Enable		
0	EN_AUTO0		RW	Enable auto wakeup 0: Disable (default) 1: Enable		

Table 25. ChargeOption2

Address: 0x31 Description: Configure the operation options

Descrip	Description: Configure the operation options											
Bit	15	14	13	12	11	10	9	8				
Field	Id PKPWR_TOVLD_DEG		EN_ PKPWR_ AICR	EN_PKPWR _VSYS	PKPWR_ OVLD_ STAT	PKPWR_ RELAX_ STAT	PKPWR	_TMAX				
Default	0	0	0	0	0	0	0	0				
Туре	R	W	RW	RW	RW	RW	RW					
Bit	7	6	5	4	3	2	1	0				
Field	EN_EXT_ ILIM	ICHG_ IDCHG_ DIR	Q2_OCP	IBUS_ OCP2_TH	EN_IBUS_ OCP1	IBUS_ OCP1_TH	EN_BATOC	BATOC_ VTH				
Default	1	0	1	1	0	1	1	1				
Туре	RW	RW	RW	RW	RW	RW	RW	RW				

Bit	Bit Name	Default	Туре	Description
15:14	PKPWR_TOVLD_ DEG [1:0]	00	RW	Input overload time in peak power mode 00: 1ms (default) 01: 2ms 10: 5ms 11: 10ms
13	EN_PKPWR_ AICR	0	RW	Enable peak power mode which is triggered by input current overshoot 0: Disable (default) 1: Enable
12	EN_PKPWR_ VSYS	0	RW	Enable peak power mode which is triggered by system voltage undershoot. 0: Disable (default) 1: Enable
11	PKPWR_OVLD_ STAT	0	RW	Peak power mode indicator. Write 0 to exit the overloading cycle timer. 0: Not in peak power mode. (default) 1: In peak power mode.
10	PKPWR_RELAX_ STAT	0	RW	Indicator of peak power relaxation. Write 0 to exit relaxation cycle timer. 0: Not in relaxation cycle. (default) 1: In relaxation mode.
9:8	PKPWR_TMAX [1:0]	00	RW	Set the peak power mode's overload and relax cycle times. 00: 20ms (default) 01: 40ms 10: 80ms 11: 1s
7	EN_EXT_ILIM	1	RW	Use the ILIM_HIZ pin to set current limit. 0: Input current limit is set by AICR register. 1: Input current limit is set by the minimum value of the ILIM_HIZ pin or AICR register (0x22). (default)

Bit	Bit Name	Default	Туре	Description
6	ICHG_IDCHG_ DIR	0	RW	The IBAT pin direction 0: As discharge current (default) 1: As charge current
5	Q2_OCP	1	RW	Set the V _{DS} threshold for Q2 overcurrent protection 0: 210mV 1: 150mV (default)
4	IBUS_OCP2_TH	1	RW	VBUS sense resistor overcurrent protection at CSIP - CSIN 0: 280mV (RSNS_IN = 0) 200mV (RSNS_IN = 1) 1: 150mV (RSNS_IN = 0) (default) 100mV (RSNS_IN = 1) (default)
3	EN_IBUS_OCP1	0	RW	Enable the VBUS sense resistor overcurrent protection 0: Disable (default) 1: Enable the threshold; it depends on IBUS_OCP1_TH (0x31[2])
2	IBUS_OCP1_TH	1	RW	Set the VBUS sense resistor overcurrent protection value 0: 133% of IAICR2 1: 200% of IAICR2 (default)
1	EN_BATOC	1	RW	Battery discharge overcurrent (BATOC) protection 0: Disable 1: Enable the threshold; its threshold depends on BATOC_VTH (0x31[0]) (default)
0	BATOC_VTH	1	RW	Set the battery discharge overcurrent protection value 0: 133% of DCHG_TH2 1: 200% of DCHG_TH2 (default)

Table 26. ChargeOption3

Address: 0x32 Description: Configure the operation options

Descrip	Description: Configure the operation options									
Bit	15	14	13	12	11	10	9	8		
Field	EN_HIZ	RESET_ REG	RESET_ MIVR	EN_OTG	EN_AICC	EN_ PORT_ CTRL	EN_VSYS_ MIN_SOFT _SR	EN_OTG_ BIGCAP		
Default	0	0	0	0	0	1	1	0		
Туре	RW	RW	RW	RW	RW	RW	RW	RW		
Bit	7	6	5	4	3	2	1	0		
Field	BATFET_ ENZ	EN_VBUS _VAP	OTG_VAP _MODE	IL_#	AVG	EN_CMP	BATFETO FF_HIZ	Reserved		
Default	0	0	1	1	0	1	0	0		
Туре	RWC	RW	RW	R	W	RW	RW	RW		

Bit	Bit Name	Default	Туре	Description
15	EN_HIZ	0	RW	Enable HiZ mode 0: Disable (default) 1: Enable
14	RESET_REG	0	RW	Reset all registers except for the MIVR (0x3F) register. 0: Idle (default) 1: Reset; the value goes back to 0 after the reset.
13	RESET_MIVR	0	RW	Reset MIVR (0x3D) resister 0: Idle (default) 1: Converter is disabled to measure the MIVR threshold.
12	EN_OTG	0	RW	OTG mode 0: Disable (default) 1: Enable
11	EN_AICC	0	RW	Enable Adaptive Input Current Control (AICC) 0: Disable (default) 1: Enable
10	EN_PORT_CTRL	1	RW	Enable BATFET control. If disabled, BGATE become high impedance. 0: Disable 1: Enable (default) This bit is activated only if the UNLOCK_PORT_CTRL (0x40[7]) is set to 1.
9	EN_VSYS_MIN_ SOFT_SR	1	RW	VSYS_MIN soft slew rate transition. 0: Disable 1: Enable (default)
8	EN_OTG_ BIGCAP	0	RW	Enable OTG compensation for VBUS effective capacitance larger than 33µF. 0: Disable (default) 1: Enable

Bit	Bit Name	Default	Туре	Description
7	BATFET_ENZ	0	RWC	 BATFET force turn off at battery only mode. This bit is not written to 1 during bus voltage is available. This bit is forced to 0 in OTG mode. 0: Disable (default) 1: Enable
6	EN_VBUS_VAP	0	RW	VAP mode selection, enable to operate in mode 2 and 3. 0: Mode 1 (default) 1: Mode 2 and 3
5	OTG_VAP_MODE	1	RW	OTG/VAP/FRS pin function assign 0: VAP 1: OTG (default)
4:3	IL_AVG [1:0]	10	RW	Converter inductor average current clamp. 00: 6A 01: 10A 10: 15A (default) 11: Disable
2	EN_CMP	1	RW	Enable independent comparator. 0: Disable 1: Enable (default)
1	BATFETOFF_HIZ	0	RW	Control BATFET on/off during charger HiZ mode. 0: BATFET on during charger HiZ mode (default) 1: BATFET off during charger HiZ mode
0	Reserved	0	RW	Reserved

Table 27. ProchotOption0

	ddress: 0x33 escription: Configure the PROCHOT options											
Bit	15	14	13	12	11	10	9	8				
Field		IAICR2 ICRIT_DEG PROCHOT 90										
Default	0	1	0	0	1	0	1	0				
Туре			RW			RW		RW				
Bit	7	6	5	4	3	2	1	0				
Field		VSYS_TH1 INOM_ DEG										
Default	1	1 0 0 0 0 0 0 1										
Туре			RV	V			RW	RW				

Bit	Bit Name	Default	Туре	Description
15:11	IAICR2 [4:0]	01001	RW	IAICR2 threshold. Trigger if the current hits the threshold: 00000: NA 00001 to 11001: 110% to 230%, step 5% 11010 to 11110: 250% to 450%, step 50% 11111: Out of range (ignored) 01001 (default) is 150%.
10:9	ICRIT_DEG [1:0]	01	RW	Typical ICRIT deglitch time to trigger PROCHOT. 00: 15μs 01: 100μs (default) 10: 400μs 11: 800μs
8	PROCHOT_MIVR _80_90	0	RW	Lower threshold of the PROCHOT_MIVR comparator When REG0x33[0] = 1, the threshold of the PROCHOT_MIVR comparator is determined by this bit setting. The minimum setting of 83%/91% of MIVR setting is clamped at VBUS_CONVENZ if the value is lower than VBUS_CONVENZ 0: 83% of MIVR (0x3D[13:6]) threshold (default) 1: 91% of MIVR (0x3D[13:6]) threshold
7:2	VSYS_TH1 [5:0]	100000	RW	VSYS threshold in VAP mode for VSYS capacitor voltage. 000000 to 111111: 3.2V to 9.5V in 100mV step 100000 (default) is 6.4V.
1	INOM_DEG	0	RW	INOM deglitch time 0: 1ms (default) 1: 60ms

Bit	Bit Name Default		Туре	Description
0	LOWER_ PROCHOT_MIVR	1	RW	Enable the lower threshold of the PROCHOT_MIVR comparator. 0: The threshold of the PROCHOT_MIVR comparator to follow the same MIVR (Reg 0x3D) setting. 1: The threshold of the PROCHOT_MIVR comparator is determined by the PROCHOT_MIVR_80_90bit (Reg 0x33[8]) setting. (default)

Table 28. ProchotOption1

Addr	ess:	0x34

Description: Configure the PROCHOT options

Descript	cription: Configure the PROCHOT options										
Bit	15	14	13	12	11	10	9	8			
Field		IDCHG_TH1									
Default	0	1	0	0	0	0	0	1			
Туре			R	W			RW				
Bit	7	6	5	4	3	2	1	0			
Field	PP_MIVR	PP_COMP	PP_ICRIT	PP_INOM	PP_ IDCHG1	PP_VSYS	PP_ BATGONE	PP_ VBUSOK			
Default	1	0	1	0	0	0	0	0			
Туре	RW	RW	RW	RW	RW	RW	RW	RW			

Bit	Bit Name	Default	Туре	Description
15:10	IDCHG_TH1 [5:0]	010000	RW	IDCHG level 1 threshold in 6-bits: LSB = 512mA 010000 (default) is 8.192A
9:8	IDCHG_DEG1 [1:0]	01	RW	IDCHG level 1 deglitch time 00: 78ms 01: 1.25s (default) 10: 5s 11: 20s
7	PP_MIVR	1	RW	Enable MIVR PROCHOT 0: Disable 1: Enable (default)
6	PP_COMP	0	RW	Enable independent comparator PROCHOT. 0: Disable (default) 1: Enable
5	PP_ICRIT	1	RW	Enable ICRIT PROCHOT 0: Disable 1: Enable (default)
4	PP_INOM	0	RW	Enable INOM PROCHOT 0: Disable (default) 1: Enable
3	PP_IDCHG1	0	RW	Enable IDCHG1 PROCHOT 0: Disable (default) 1: Enable
2	PP_VSYS	0	RW	Enable VSYS PROCHOT 0: Disable (default) 1: Enable
1	PP_BATGONE	0	RW	Enable battery removal PROCHOT when the CELL_BATPRES pin is low 0: Disable (default) 1: Enable
0	PP_VBUSOK	0	RW	Enable adapter removal PROCHOT 0: Disable (default) 1: Enable

Table 29. ADCOption

			-						
Address Descript		the A/D conv	erter						
Bit	15	14	13	12	11	10	9	8	
Field	ADC_ CONV	ADC_ START	ADC_ FULLSCAL E	Reserved					
Default	0	0	1	0	0	0	0	0	
Туре	RW	RW	RW			R			
Bit	7	6	5	4	3	2	1	0	
Field	EN_ADC_ VCOMP	EN_ADC_ VBUS	Reserved	EN_ADC_ IBUS	EN_ADC_ IBAT_ DISCHG	EN_ADC_ IBAT_CHG	EN_ADC_ VSYS	EN_ADC_ VBAT	
Default	0	0	0	0	0	0	0	0	
Туре	RW	RW	RW	RW	RW	RW	RW	RW	

Bit	Bit Name	Default	Туре	Description
15	ADC_CONV	0	RW	Enable A/D conversion repeat mode 0: One-shot (default) 1: Continuous (1sec cycle)
14	ADC_START	0	RW	A/D conversion starts in one-shot mode.Automatically reset to 0 after the one-shot update is complete.0: Ready (default)1: Start
13	ADC_FULLSCALE	1	RW	ADC input voltage full scale range for CMPIN. 0: 2.04V 1: 3.06V (default)
12:8	Reserved	00000	R	Reserved
7	EN_ADC_VCOMP	0	RW	A/D conversion for independent comparator 0: Disable (default) 1: Enable
6	EN_ADC_VBUS	0	RW	A/D conversion for BUS voltage 0: Disable (default) 1: Enable
5	Reserved	0	R	Reserved
4	EN_ADC_IBUS	0	RW	A/D conversion for BUS current 0: Disable (default) 1: Enable
3	EN_ADC_IBAT_ DISCHG	0	RW	A/D conversion for battery discharge current 0: Disable (default) 1: Enable
2	EN_ADC_IBAT_CH G	0	RW	A/D conversion for battery charge current 0: Disable (default) 1: Enable
1	EN_ADC_VSYS	0	RW	A/D conversion for SYS voltage 0: Disable (default) 1: Enable

RICHTEK

Bit	Bit Name	Default	Туре	Description
0	EN_ADC_VBAT	0	RW	A/D conversion for battery voltage 0: Disable (default) 1: Enable

Table 30. ChargeOption4

Address: 0x36 Description: Configure the operation options

Descript	Jescription: Configure the operation options								
Bit	15	14	13	12	11	10	9	8	
Field		VSYS_UVP		DITHE	R_EN	VSYS_UVP _NO_ HICCUP	PP_VBUS_ VAP	VBUS_VAP _ PP_STAT	
Default	0	0	1	0	0	0	0	0	
Туре		RW		R	W	RW	RW	RWC	
Bit	7	6	5	4	3	2	1	0	
Field	IDCHG	_DEG2		IDCHG_TH2		PP_ IDCHG2	IDCHG2_ PP_STAT	Reserved	
Default	0	1	0	0 0 1			0	0	
Туре	R	W		RW		RW	RWC	R	

Bit	Bit Name	Default	Туре	Description
15:13	VSYS_UVP [2:0]	001	RW	VSYS undervoltage-lockout. 000: 3.65V 001: 3.65V (default) 010: 4.0V 011: 4.8V 100: 5.6V 101: 6.4V 110: 7.2V 111: 8.0V
12:11	DITHER_EN [1:0]	00	RW	Frequency dithering configuration 00: Disable (default) 01: 2% 10: 4% 11: 6%
10	VSYS_UVP_NO_ HICCUP	0	RW	Disable VSYS_UVP hiccup configuration 0: Enable (default) 1: Disable
9	PP_VBUS_VAP	0	RW	Enable VBUS PROCHOT 0: Disable (default) 1: Enable
8	8 VBUS_VAP_PP_ STAT		RWC	VBUS_VAP PROCHOT status. 0: Not triggered (default) 1: Triggered
7:6	IDCHG_DEG2 [1:0]	01	RW	Battery discharge current limit 2 deglitch time 00: 100µs 01: 1.6ms (default) 10: 6ms 11: 12ms

69

www.richtek.com

Bit	Bit Name	Default	Туре	Description
5:3	IDCHG_TH2 [2:0]	001	RW	Battery discharge current limit2 based on percentage of IDCHG_TH1. 000: 125% 001: 150% (default) 010: 175% 011: 200% 100: 250% 101: 300% 110: 350% 111: 400%
2	PP_IDCHG2	0	RW	Enable IDCHG2 PROCHOT 0: Disable (default) 1: Enable
1	IDCHG2_PP_ STAT	0	RWC	IDCHG2 PROCHOT status. 0: Not triggered (default) 1: Triggered
0	Reserved	0	R	Reserved

				Table 31. \	/AP					
	Address: 0x37 Description: Configure VAP (Vmin Active Protection) operation options									
Bit	15	14	13	12	11	10	9	8		
Field			V	/BUS_VAP_1	ΓH			Reserved		
Default	0	0	0	0	1	0	1	0		
Туре				RW				R		
Bit	7	6	5	4	3	2	1	0		
Field		VSYS_TH2 						EN_FRS		
Default	0	1	1	0	1	1	0	0		
Туре			R	W			RW	RW		

Bit	Bit Name	Default	Туре	Description
15:9	VBUS_VAP_TH [6:0]	0000101	RW	VBUS PROCHOT trigger voltage threshold in 7- bits with 3.2V offset: LSB = 100mV 0000101 (default) is 3.7V
8	Reserved	0	R	Reserved
7:2	VSYS_TH2 [5:0]	011011	RW	VSYS PROCHOT trigger voltage threshold in 6- bits: LSB = 100mV 011011 (default) is 5.9V
1	EN_TH2_ FOLLOW_TH1	0	RW	Enable neglecting register VSYS_TH2 (Reg 0x37 [7:2]) setting 0: Disable, VSYS_TH2 set by 0x37[7:2] (default) 1: Enable, VSYS_TH2 follow to VSYS_TH1 (0x33[7:2])
0	EN_FRS	0	RW	Fast role swap enables. Do not toggle while OTG is enabled. 0: Disable (default) 1: Enable

Table 32. OTGVoltage

	Address: 0x3B Description: Set the OTG output voltage									
Bit	15	14	13	12	11	10	9	8		
Field	Rese	erved			VOTG	_REG				
Default	0	0	0	0	1	0	0	1		
Туре	F	२			R	W				
Bit	7	6	5	4	3	2	1	0		
Field			VOTG	_REG			Rese	erved		
Default	1	1 1 0 0 0 1 0 0								
Туре	RW R									

Bit	Bit Name	Default	Туре	Description
15:14	Reserved	00	R	Reserved
13:2	VOTG_REG [11:0]	00100111 0001	RW	OTG output and VAP charge voltage are in 12 bits: LSB = 8mV The effective range is 3.0V (0x177) to 24.0V (0xBB8). Values written outside of this range are ignored. 0010 0111 0001 (default) is 5V.
1:0	Reserved	00	R	Reserved

Table 33. OTGCurrent

	Address: 0x3C Description: Set the OTG current limit									
Bit	15	14	13	12	11	10	9	8		
Field	Reserved				IOTG_REG					
Default	0	0	1	1	1	1	0	0		
Туре	R				RW					
Bit	7	6	5	4	3	2	1	0		
Field				Rese	erved					
Default	0	0 0 0 0 0 0 0 0								
Туре		R								

Bit	Bit Name	Default	Туре	Description
15	Reserved	0	R	Reserved
14:8	IOTG_REG [6:0]	0111100	RW	OTG current limit in 7 bits: LSB = 50mA (RSENSE_IN = 10m Ω), 100mA (RSENSE_IN = 5m Ω) 0111100 (default) is 3.0A
7:0	Reserved	00000000	R	Reserved

Table 34. MIVR

	Address: 0x3D Description: Set the MIVR (Minimum Input Voltage Regulation) voltage										
Bit	15	14	13	12	11	10	9	8			
Field	Rese	erved		VMIVR							
Default	0	0	0	0	0	0	0	0			
Туре	R		RW								
Bit	7	6	5	4	3	2	1	0			
Field	VM	IVR			Rese	erved					
Default	0	0	0	0	0	0	0	0			
Туре	R	W	R								

Bit	Bit Name	Default	Туре	Description
15:14	Reserved	00	R	Reserved
13:6	VMIVR [7:0]	0000000	RW	MIVR voltage in 8 bits with 3.2V offset: LSB = 64mV The effective range is 3.2V (0x00) to 19.52V (0xFF). Writing values outside of this range is ignored.
5:0	Reserved	000000	R	Reserved

Table 35. VsysMin

	Address: 0x3E Description: Set the system minimum voltage										
Bit	15	14	13	12	11	10	9	8			
Field	VSYS_MIN										
Default	0	0	0	0	0	0	0	0			
Туре				R'	W						
Bit	7	6	5	4	3	2	1	0			
Field				Rese	erved						
Default	0	0	0	0	0	0	0	0			
Туре		R									

Bit	Bit Name	Default	Туре	Description
15:8	VSYS_MIN [7:0]	00000000	RW	VSYS_MIN voltage in 8 bits: LSB = 100mV The effective range is 5.0V (0x32) to 19.2V (0xC0). Writing values outside of this range is ignored.
7:0	Reserved	00000000	R	Reserved

RICHTEK

Table 36. AICRHost

	Address: 0x3F Description: Set the AICR (Average Input Current Regulation) current									
Bit	15	14	13	12	11	10	9	8		
Field	Reserved		AICR_HOST							
Default	0	1	0	0	0	0	0	1		
Туре	R				RW					
Bit	7	6	5	4	3	2	1	0		
Field				Rese	erved					
Default	0	0	0	0	0	0	0	0		
Туре		R								

Bit	Bit Name	Default	Туре	Description
15	Reserved	0	R	Reserved
14:8	AICR_HOST [6:0]	1000001	RW	AICR current in 7 bits: LSB = 50mA (RSENSE_IN = 10m Ω), 100mA (RSENSE_IN = 5m Ω) This register value reflects in 0x22[14:8]. 1000001 (default) is 3.25A
7:0	Reserved	00000000	R	Reserved

 Copyright © 2025 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation.

 www.richtek.com
 RT9478M_DS-00
 May 2025

Г

Table 37. AuxFunction

	Address: 0x40 Description: Configure micelles operation										
Bit	15	14	13	12	11	10	9	8			
Field	PROCHO T_DELAY		VSYS_OVP			PWM_ LOWFREQ	SMBUS_ TIMEOUT_ DISABLE	SMBUS_ TIMEOUT_ MODE			
Default	1	0	0	0	0	0	0	1			
Туре	RW		RW		R	RW					
Bit	7	6	5	4	3	2	1	0			
Field	UNLOCK_ PORT_ CTRL		Reserved								
Default	0	0	0	0	0	0	0	0			
Туре	RW				R						

Bit	Bit Name	Default	Туре	Description
15	PROCHOT_DELAY	1	RW	0: 1μs 1: 10μs (default)
14:12	VSYS_OVP [2:0]	000	RW	VSYS overvoltage protection threshold. 000: Depends on cell count by CELL_BATPRES (default) 001: 15V 010: 16V 011: 20V 100: 21V 101: 22V 110: 23V 111: 24V
11	Reserved	0	R	Reserved
10	PWM_LOWFREQ	0	RW	Set PWM frequency. 0: Follow 0x12[9] setting (1200kHz or 800kHz) (default) 1: 720kHz 0x40[10] setting has higher priority. If 0x40[10] = 1, PWM frequency is set to 720kHz regardless 0x12[9] setting.
9	SMBUS_TIMEOUT_ DISABLE	0	RW	0: Enable Timeout (default) 1: Disable Timeout
8	SMBUS_TIMEOUT_ MODE	1	RW	0: SCL 1: SCL and SDA (default)
7	UNLOCK_PORT_ CTRL	0	RW	Activates EN_PORT_CTRL (0x32[10]). 0: EN_PORT_CTRL is disabled (default) 1: EN_PORT_CTRL is enabled
6:0	Reserved	0000000	R	Reserved

RICHTEK

	Table 38. MfgID										
	Address: 0xFE Description: Manufacturer ID										
Bit	15	14	13	12	11	10	9	8			
Field		Reserved									
Default	0	0	0	0	0	0	0	0			
Туре				F	र						
Bit	7	6	5	4	3	2	1	0			
Field				MFC	G_ID						
Default	0	0	0	1	1	1	1	0			
Туре				F	र						

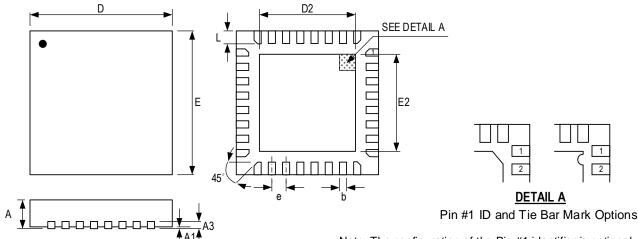

Bit	Bit Name	Default	Туре	Description		
15:8	Reserved	00000000	R	Reserved		
7:0	MFG_ID [7:0]	00011110	R	Manufacturer ID, 0x1E		

Table 39. DeviceID

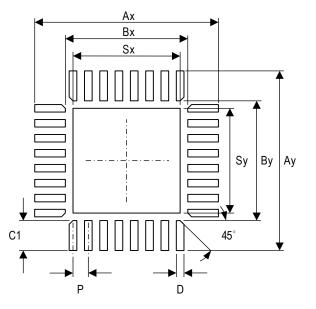
	Address: 0xFF Description: Device ID										
Bit	15	14	13	12	11	10	9	8			
Field	Reserved										
Default	0	0	0	0	0	0	0	0			
Туре				F	र						
Bit	7	6	5	4	3	2	1	0			
Field				DEVIC	CE_ID						
Default	0	0	0	1	1	1	0	0			
Туре	R										

Bit	Bit Name	Default	Туре	Description
15:8	Reserved	00000000	R	Reserved
7:0	DEVICE_ID [7:0]	00011100	R	Device ID, 0x1C

18 Outline Dimension

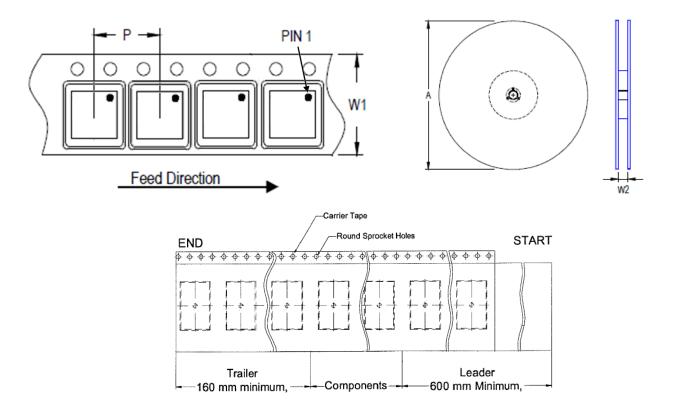
Note: The configuration of the Pin #1 identifier is optional. but must be located within the zone indicated.

	Cumb ol	Dimensions I	n Millimeters	Dimension	s In Inches
	Symbol	Min	Max	Min	Max
	А	0.700	0.800	0.028	0.031
	A1	0.000	0.050	0.000	0.002
	A3	0.175	0.250	0.007	0.010
	b	0.150	0.250	0.006	0.010
	D	3.900	4.100	0.154	0.161
D2	Option 1	2.650	2.750	0.104	0.108
D2	Option 2	2.750	2.850	0.108	0.112
	E	3.900	4.100	0.154	0.161
E2	Option 1	2.650	2.750	0.104	0.108
ΕZ	Option 2 2.750		2.850	0.108	0.112
	е	0.4	00	0.0	016
	L	0.300	0.400	0.012	0.016

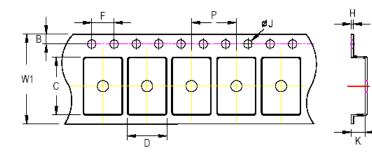

W-Type 32L QFN 4x4 Package

Note 10. The package of the RT9478M uses Option 2.

19 Footprint Information


Dealvage	Package					Footp	rint Dir	nensio	n (mm	ı)			Teleronee
Package		Pins	Ρ	Ax	Ay	Вx	Ву	C*32	C1*8	D	Sx	Sy	Tolerance
V/W/U/XQFN4*4-32	Option1	32	0.40	1 00	1 00	2 20	2 20	0.80	0.75	0.20	2 90	2 00	±0.05
V/W/U/AQFIN4 4-32	Option2	32	0.40	4.00	4.00	3.20	3.20	0.60	0.75	0.20	2.00	2.00	±0.05

Note 11. The package of the RT9478M uses Option 2.


Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. www.richtek.com RT9478M_DS-00 May 2025 78

20 Packing Information

20.1 Tape and Reel Data

Package	Tape Size	Pocket Pitch	Reel S	ize (A)	Units	Trailer	Leader	Reel Width (W2)	
Туре	(W1) (mm)	(P) (mm)	mm) ()		per Reel	(mm)	(mm)	Min/Max (mm) ́	
(V, W) QFN/DFN 4x4	12	8	330	13	3,000	160	600	12.4/14.4	

C, D, and K are determined by component size.						
The clearance between the components and						
the cavity is as follows:						
- For 12mm carrier tape: 0.5mm max.						

Tape Size	W1	F	c	В		F		ØJ		К		Н
Tape Size	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	1.0mm	1.3mm	0.6mm

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. RT9478M_DS-00 May 2025 www.richtek.com

20.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 13"	4	1 reel per inner box Box G
2	HIC & Desiccant (2 Unit) inside	5	6 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	R	eel		Box			Carton	
Package	Size	Units	Item	Reels	Units	Item	Boxes	Units
(V, W) QFN and DFN 4x4	13"	3,000	Box G	1	3,000	Carton A	6	18,000

20.3 **Packing Material Anti-ESD Property**

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹	10 ⁴ to 10 ¹¹	10 ⁴ to 10 ¹¹	10⁴ to 10¹¹	10 ⁴ to 10 ¹¹	10 ⁴ to 10 ¹¹

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

RICHTEK is a registered trademark of Richtek Technology Corporation. Copyright © 2025 Richtek Technology Corporation. All rights reserved.

RT9478M DS-00 May 2025

21 Datasheet Revision History

Version	Date	Description	Item
00	2025/5/22	First Edition	

82