

RT9297

3A High-Performance Boost Converter

1 General Description

The RT9297 is a high-performance boost converter that provides a regulated supply voltage for activematrix thin-film transistor (TFT) liquid-crystal displays (LCDs).

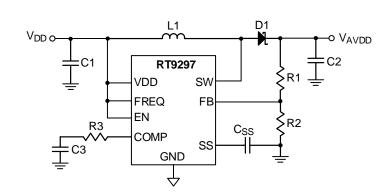
The boost converter incorporates current-mode, fixedfrequency, pulse-width modulation (PWM) circuitry with a built-in N-Channel power MOSFET to achieve high efficiency and fast transient response.

The RT9297 is available in a WDFN-10L 3x3 package. The recommended junction temperature range is -40° C to 125°C, and the ambient temperature range is -40° C to 85°C.

2 Ordering Information

RT9297

—Pin 1 Orientation Empty: Quadrant 1 (2): Quadrant 2, Follow EIA-481


-----**Package Type**⁽¹⁾ QW: WDFN-10L 3x3 (W-Type)

-Lead Plating System G: Green (Halogen Free and Pb Free)⁽²⁾

Note 1.

- Marked with ⁽¹⁾ indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.
- Marked with ⁽²⁾ indicated: Richtek products are Richtek Green Policy compliant.

6 Simplified Application Circuit

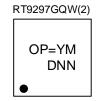
3 Features

Technical Documentation

High Efficiency up to 90%

Evaluation Boards

- Adjustable Output Voltage: VDD to 24V
- Wide Input Supply Voltage: 2.6V to 5.5V
- Input Undervoltage-Lockout
- Pin-Programmable Switching Frequency 640kHz/1.2MHz
- Programmable Soft-Start
- Small 10-Lead WDFN Package


4 Applications

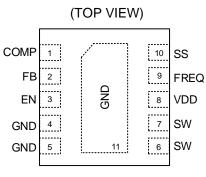
- Notebook Computer Displays
- LCD Monitor Panels
- LCD TV Panels

5 Marking Information

EZ=YM DNN EZ=: Product Code YMDNN: Date Code

OP=: Product Code YMDNN: Date Code

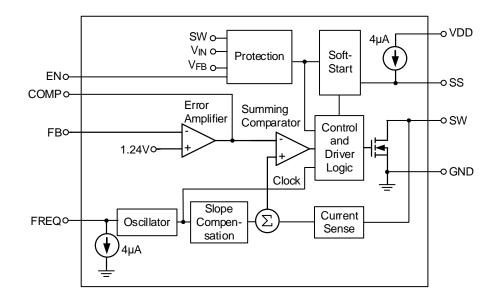
Table of Contents


1	General Description	1
2	Ordering Information	1
3	Features	1
4	Applications	1
5	Marking Information	1
6	Simplified Application Circuit	1
7	Pin Configuration	3
8	Functional Pin Description	3
9	Functional Block Diagram	4
10	Absolute Maximum Ratings	5
11	Recommended Operating Conditions	
12	Electrical Characteristics	5
13	Typical Application Circuit	7
14	Typical Operating Characteristics	8
15	Application Information	10
	15.1 Boost Converter	
	15.2 Soft-Start Function	

	15.3	Output Voltage Setting	10
	15.4	Loop Compensation	10
	15.5	Overcurrent Protection	10
	15.6	Over-Temperature Protection	11
	15.7	Inductor Selection	11
	15.8	Diode Selection	11
	15.9	Capacitor Selection	11
	15.10	Input Capacitor Selection	12
	15.11	Thermal Considerations	12
	15.12	Layout Considerations	13
16		e Dimension	
17	Footp	rint Information	16
18	Packi	ng Information	17
	18.1	Tape and Reel Data	17
	18.2	Tape and Reel Packing	20
	18.3	Packing Material Anti-ESD Property	23
19	Datas	heet Revision History	24

www.richtek.com

7 Pin Configuration


8 Functional Pin Description

Pin No.	Pin Name	Pin Function
1	COMP	Compensation pin. Connect a series RC circuit from the COMP pin to ground for error amplifier compensation.
2	FB	Feedback pin. The nominal feedback regulation voltage is 1.24V. Connect an external resistor voltage divider between the boost converter's output (VAVDD) and ground (GND), with the center tap connected to the FB pin. To reduce noise coupling, place the voltage-divider close to the IC and minimize the trace area.
3	EN	Enable control input. Drive EN low to turn off the boost converter.
4, 5, 11 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
6, 7	SW	Switch node. SW serves as the drain of the internal MOSFET. To minimize electromagnetic interference (EMI), connect the junction of the inductor and rectifier diode to SW and ensure the trace area is as small as possible.
8	VDD	Supply pin. Bypass VDD by connecting a ceramic capacitor with a minimum value of $1\mu F$ directly to GND.
9	FREQ	Frequency-select input. The oscillator frequency is set to 640kHz when the FREQ input is low, and is set to 1.2MHz when FREQ is high. Additionally, this input features a pull-down current of 6μ A.
10	SS	Soft-start control pin. Connect a soft-start capacitor (CSS) to this pin. A 4μ A constant current charges the soft-start capacitor. When EN is connected to GND, the soft-start capacitor is discharged. When EN is connected to VDD high, the soft-start capacitor is charged to VDD. Leave floating if not using soft-start.

9 Functional Block Diagram

www.richtek.com

10 Absolute Maximum Ratings

(Note 2)

SW to GND	0.3V to 26V
Other Pins to GND	0.3V to 6V
 Power Dissipation, PD @ TA = 25°C 	
WDFN-10L 3x3	- 1.667W
Package Thermal Resistance (<u>Note 3</u>)	
WDFN-10L 3x3, θJA	- 60°C/W
WDFN-10L 3x3, θJC	- 8.2°C/W
Lead Temperature (Soldering, 10 sec.)	- 260°C
Storage Temperature Range	- −65°C to 150°C
ESD Susceptibility (<u>Note 4</u>)	
HBM (Human Body Model)	- 2kV

- Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 3. θ_{JA} is measured under natural convection (still air) at T_A = 25°C with the component mounted on a low effectivethermal-conductivity single-layer test board on a JEDEC 51-3 thermal measurement standard.
- Note 4. Devices are ESD sensitive. Handling precautions are recommended.

11 Recommended Operating Conditions

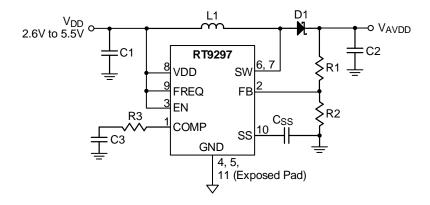
(Note 5)

٠	Supply Input Voltage, VDD	2.6V to 5.5V
•	Junction Temperature Range	–40°C to 125°C
•	Ambient Temperature Range	–40°C to 85°C

Note 5. The device is not guaranteed to function outside its operating conditions.

12 Electrical Characteristics

(V_{DD} = 3.3V, T_A = $25^{\circ}C$, unless otherwise specified.)


Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit			
Supply Current									
Input Voltage Denge	\/	V _{AVDD} < 18V	2.6		5.5	v			
Input Voltage Range Output Voltage Range	VDD	18V < VAVDD < 24V	4		5.5				
Output Voltage Range	VAVDD		Vdd		24	V			
Undervoltage-Lockout	VUVLO	V _{DD} rising		2.4		V			
Threshold	ervoltage-Lockout VUVLO VDD rising	Hysteresis		50		mV			
Quieseent Current		VFB = 1.3V, SW not switching		0.5					
Quiescent Current	lQ	VFB = 1V, SW switching		4		mA			
Shutdown Current	ISHDN	EN = GND		0.1	10	μA			

RICHTEK is a registered trademark of Richtek Technology Corporation. Copyright © 2024 Richtek Technology Corporation. All rights reserved. DS9297-04 November 2024

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Oscillator						•
		FREQ = GND	500	640	750	
Oscillator Frequency	fsw	FREQ = VIN	1000	1240	1500	kHz
Maximum Duty Cycle	Dмах			90		%
Error Amplifier	·					•
Feedback Regulation Voltage	Vfb		1.22	1.24	1.26	V
Feedback Input Bias Current	Ifb			125	250	nA
Feedback Line Regulation	VLINE_REG_FB			0.05	0.2	%∕∨
Transconductance	gm	$\Delta I = \pm 2.5 \mu A$ at COMP = 1V		135		μAV
Voltage Gain	Av	FB to COMP		700		V/V
N-MOSFET						
Current Limit	ILIM		3	3.8	5	А
On-Resistance	RDSON			125	250	mΩ
Leakage Current	Ilk	Vsw = 24V		30	45	μA
Current-Sense Transresistance	Rcs			0.25		V/A
Soft-Start						
Charge Current	lss			4		μA
Control Inputs						
EN, FREQ Input Voltage Logic-Low	VIL				0.3 x Vdd	V
EN, FREQ Input Voltage Logic-High	Vih		0.7 x Vdd			V
EN, FREQ Input Voltage Hysteresis	VIN_HYS			0.1 x V _{DD}		V
FREQ Pull-Down Current	IPD			6		μA
EN Input Current	IEN	EN = GND		0.001	1	μA

13 Typical Application Circuit

7

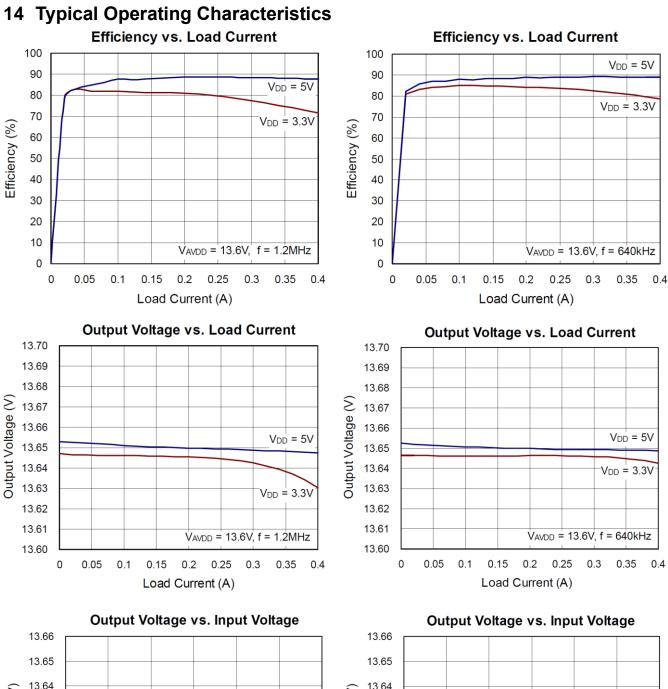
www.richtek.com

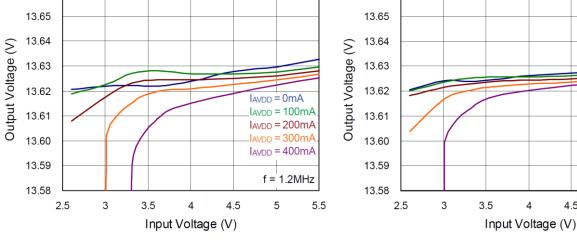
IAVDD = 0mA

IAVDD = 100mA

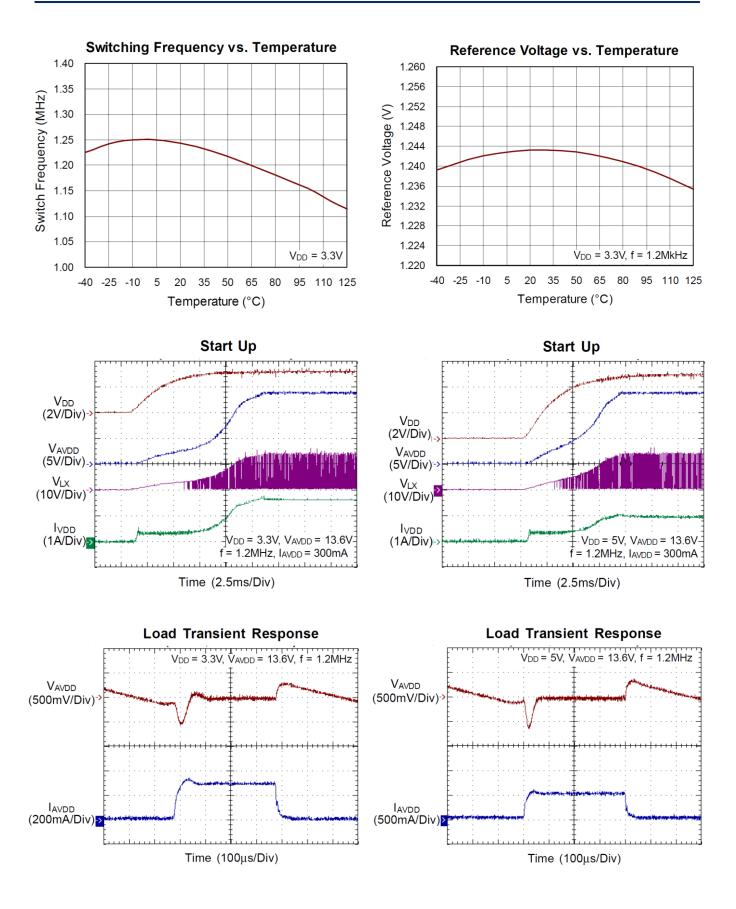
I_{AVDD} = 200mA

IAVDD = 300mA


I_{AVDD} = 400mA


5

4.5


f = 640kHz

5.5

RT9297

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

15 Application Information

(<u>Note 6</u>)

The RT9297 is a high-performance boost converter designed to generate the voltage required by the panel source driver ICs. Detailed descriptions and component selection information follow.

15.1 Boost Converter

The boost converter features a high-efficiency, current-mode PWM architecture that operates at frequencies of either 640kHz or 1.2MHz. It is designed for fast transient responses, enabling it to generate the necessary power supplies for the source drivers of TFT LCD displays. The high operating frequency permits the use of smaller components, which helps to reduce the overall thickness of the LCD panel. The output voltage can be set by configuring a resistive voltage-divider connected to the FB (feedback) pin. The error amplifier adjusts the COMP (compensation) voltage in response to the voltage sensed at the FB pin, thereby regulating the output voltage. To enhance stability, a slope compensation signal is added to the current-sense signal. This combined signal is then compared with the COMP voltage to determine the current trip point and duty cycle.

15.2 Soft-Start Function

The RT9297 features a soft-start function designed to minimize inrush current during power-up. Upon powering on, an internal constant current source charges an external capacitor. This process limits the rate of voltage rise on the COMP pin during the charging period, which concurrently restricts the peak current in the inductor. When the power is turned off, the external capacitor is discharged, preparing it for the next soft-start cycle.

The soft-start function is facilitated by an external capacitor that is charged with a $4\mu A$ (microampere) constant current. To ensure proper output voltage regulation, the capacitor must have a sufficient capacitance. A typical value for the soft-start capacitor is 33nF, with an acceptable range from 10nF to 100nF.

15.3 Output Voltage Setting

The regulated output voltage is shown in the following equation:

$$V_{AVDD} = 1.24V x \left(1 + \frac{R_1}{R_2} \right)$$

The recommended value for R2 should be up to $10k\Omega$ without any sacrifice in performance. Placing the resistor divider as close as possible to the chip can help reduce noise sensitivity.

15.4 Loop Compensation

The voltage feedback loop can be compensated with an external compensation network consisting of RCOMP and CCOMP. Choose RCOMP to set the high-frequency integrator gain for a fast transient response, and select CCOMP to set the integrator zero to maintain loop stability. For a typical application with VDD = 3.3V, VAVDD = 13.6V, C4 = 4.7μ F x 3, and L = 3.6μ H, the recommended values for compensation are as follows: RCOMP = $56k\Omega$ and CCOMP = 330pF.

15.5 Overcurrent Protection

The RT9297 boost converter features overcurrent protection to limit the peak current in the inductor, preventing potential damage to the inductor and diode. During the ON-time, if the inductor current exceeds the preset current limit, the internal SW switch turns off immediately, effectively shortening the duty cycle. As a result, the output voltage may drop if an overcurrent condition occurs. It is important to note that the current limit is also influenced by the input voltage, duty cycle, and the value of the inductor.

10

Over-Temperature Protection 15.6

The RT9297 boost converter is equipped with over-temperature protection function to prevent the chip from overheating. When the junction temperature exceeds 155°C, the device will shut down to protect itself. Once the temperature has decreased by approximately 30°C, the device will resume normal operation. To ensure continuous operation, it is recommended not to exceed the maximum junction temperature rating of 125°C.

15.7 Inductor Selection

The inductance value is determined based on the maximum input current. A general rule of thumb is that the inductor current ripple should be between 20% and 40% of the maximum input current. Assuming we choose 40% as the criterion, then the calculation for the inductance will proceed accordingly.

$$I_{VDD(MAX)} = \frac{V_{AVDD} \times I_{AVDD(MAX)}}{\eta \times V_{DD}}$$

 $IRIPPLE = 0.4 \times IVDD(MAX)$

where η is the efficiency, IVDD(MAX) is the maximum input current, IRIPPLE is the inductor current ripple.

Additionally, the peak input current is the sum of the maximum input current and half of the inductor current ripple. $I_{PEAK} = 1.2 \times I_{VDD(MAX)}$

Note that the saturation current of the inductor must exceed the peak current (IPEAK). The inductance value can ultimately be determined using the following equation:

$$L = \frac{\eta x (V_{DD})^2 x (V_{AVDD} - V_{DD})}{0.4 x (V_{AVDD})^2 x I_{AVDD(MAX)} x f_{SW}}$$

where fsw represents the switching frequency of the system. To optimize system performance and minimize electromagnetic interference (EMI) issues, the use of a shielded inductor is recommended.

Diode Selection 15.8

A Schottky diode is an excellent choice for an asynchronous boost converter due to its low forward voltage drop. However, when selecting a Schottky diode, it is crucial to consider power dissipation, reverse voltage rating, and pulsating peak current as important parameters. It is advisable to select a diode with a reverse voltage rating that exceeds the maximum output voltage to ensure reliable operation.

15.9 **Capacitor Selection**

Output ripple voltage is an important metric for assessing performance. It comprises two components: one is the product of the input current and the Equivalent Series Resistance (ESR) of the output capacitor; the other is created by the charging and discharging cycles of the output capacitor. As shown in Figure 1, ΔV_{OUT1} can be evaluated using the principle of ideal energy equalization. Based on the definition of charge (Q), the Q value can be calculated using the following equation:

$$Q = \frac{1}{2} \times \left[\left(I_{IN} + \frac{1}{2} \Delta I_L - I_{OUT} \right) + \left(I_{IN} - \frac{1}{2} \Delta I_L - I_{OUT} \right) \right] \times \frac{V_{IN}}{V_{OUT}} \times \frac{1}{f_{SW}} = C_{OUT} \times \Delta V_{OUT1}$$

where fsw is the switching frequency, and ΔI_L represents the inductor ripple current. To estimate the value of Δ VOUT1, move COUT to the left side of the equation as shown below:

$$\Delta V_{OUT1} = \frac{D \times I_{OUT}}{\eta \times C_{OUT} \times f_{SW}}$$

RICHTEK is a registered trademark of Richtek Technology Corporation. Copyright © 2024 Richtek Technology Corporation. All rights reserved. DS9297-04 November 2024 www.richtek.com Finally, by incorporating the Equivalent Series Resistance (ESR) into the calculation, the total output ripple voltage can be determined using the following equation:

$$\Delta V_{OUT} = I_{IN} \times ESR + \frac{D \times I_{OUT}}{\eta \times C_{OUT} \times f_{SW}}$$

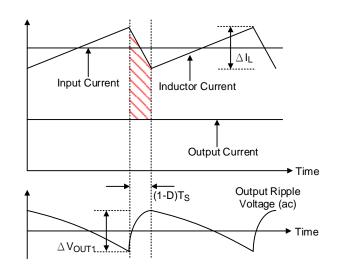


Figure 1. The Output Ripple Voltage without the Contribution of ESR

15.10 Input Capacitor Selection

Low ESR ceramic capacitors are recommended for input capacitor applications. A low ESR effectively reduces the input voltage ripple caused by the switching operation. A capacitance of 10μ F is sufficient for most applications. However, this value can be reduced for applications with lower output current requirements. Another important consideration is that the voltage rating of the input capacitor must exceed the maximum input voltage.

15.11 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature T_{J(MAX)}, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

$\mathsf{P}\mathsf{D}(\mathsf{M}\mathsf{A}\mathsf{X}) = \big(\mathsf{T}\mathsf{J}(\mathsf{M}\mathsf{A}\mathsf{X}) - \mathsf{T}\mathsf{A}\big) \; / \; \theta \mathsf{J}\mathsf{A}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WDFN-10L 3x3 package, the thermal resistance, θ_{JA} , is 60°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as below:

 $\mathsf{P}\mathsf{D}(\mathsf{MAX})$ = (125°C - 25°C) / (60°C/W) = 1.667W for a WDFN-10L 3x3 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curve in <u>Figure 2</u> allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

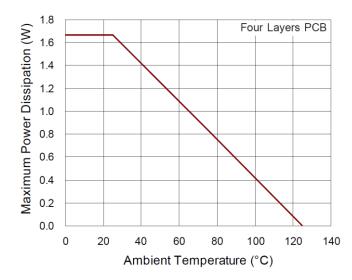


Figure 2. Derating Curve of Maximum Power Dissipation

15.12 Layout Considerations

For high-frequency switching power supplies, PCB layout plays a crucial role in achieving good regulation, high efficiency, and stability. The guidelines provided below are intended to assist in optimizing the PCB layout.

- For optimal regulation, position the power components as close together as possible. Ensure that the traces are both wide and short, particularly for the high-current output loop.
- Place the feedback voltage divider resistors close to the feedback pin. Keep the trace connecting to the center of the divider short and ensure it is isolated from any switching nodes to prevent noise interference.
- The compensation circuit should be placed at a distance from the power loops and shielded with a ground trace to avoid noise coupling.
- Minimize the area of the SW node and ensure that it is wide and short. Additionally, maintain a distance between the SW node and the FB pin to prevent interference.
- Connect the exposed pad of the chip to a robust ground plane to ensure optimal thermal management.

The feedback voltage divider resistors must be near the feedback pin. The divider center trace and compensation components must be shorter and avoid the trace near any switching nodes.

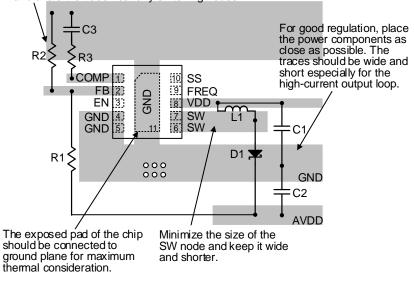
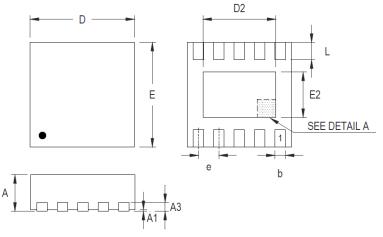
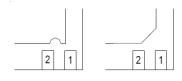




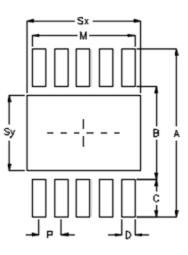
Figure 3. PCB Layout Guide

Note 6. The information provided in this section is for reference only. The customer is solely responsible for designing, validating, and testing any applications incorporating Richtek's product(s). The customer is also responsible for applicable standards and any safety, security, or other requirements.

16 Outline Dimension

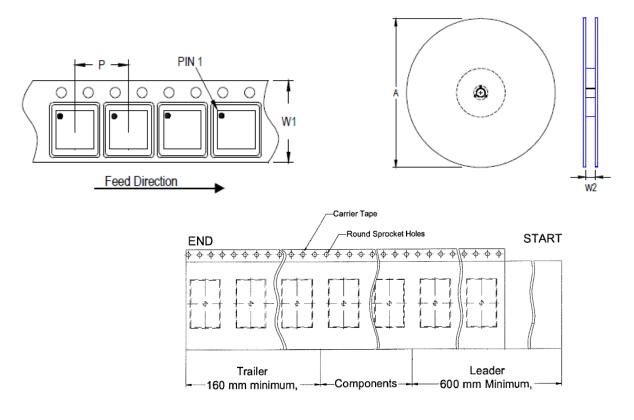
DETAIL A Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

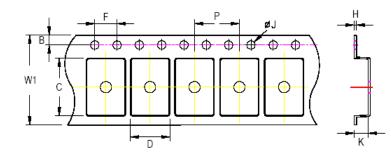

Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.175	0.250	0.007	0.010		
b	0.180	0.300	0.007	0.012		
D	2.950	3.050	0.116	0.120		
D2	2.300	2.650	0.091	0.104		
E	2.950	3.050	0.116	0.120		
E2	1.500	1.750	0.059	0.069		
е	0.5	500	0.020			
L	0.350	0.450	0.014	0.018		

W-Type 10L DFN 3x3 Package

17 Footprint Information



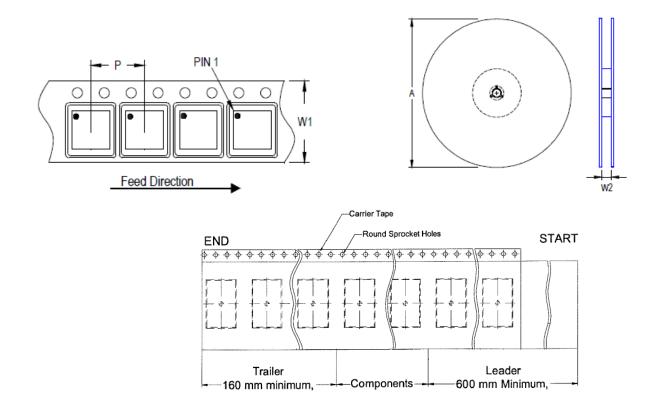
Dookogo	Number of	Footprint Dimension (mm)								Talaranaa
Package	Pin	Р	А	В	С	D	Sx	Sy	М	Tolerance
V/W/U/X/ZDFN3*3-10	10	0.50	3.80	2.10	0.85	0.30	2.55	1.70	2.30	±0.05



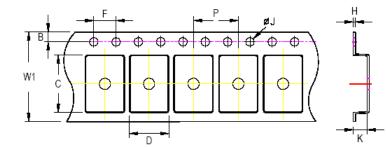
18 Packing Information

- 18.1 **Tape and Reel Data**
- Pin 1 at Quadrant 1 for 7" 18.1.1

Package Type	Tape Size	Pocket Pitch	Reel Size (A)		Units	Trailer	Leader	Reel Width (W2)
	(W1) (mm)	(P) (mm)	(mm) (in)		per Reel	(mm)	(mm)	Min./Max. (mm)
(V, W) QFN/DFN 3x3	12	8	180	7	1,500	160	600	12.4/14.4

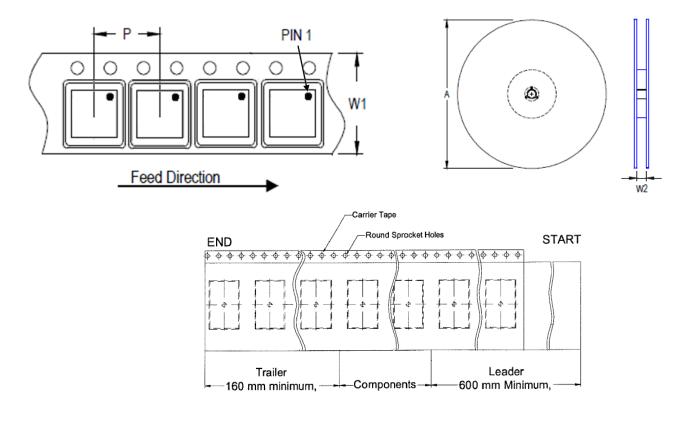

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

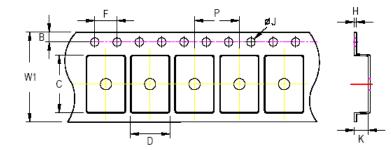

Tape Size	W1	Р		В		F		ØJ		К		Н
	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	1.0mm	1.3mm	0.6mm

18.1.2 Pin 1 at Quadrant 1 for 13"

Package Type	Tape Size	Pocket Pitch	Reel Size (A)		Units	Trailer (mm)	Leader (mm)	Reel Width (W2)	
	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	()	()	Min./Max. (mm)	
(V, W) QFN/DFN 3x3	12	8	330	13	2,500	160	600	12.4/14.4	



C, D, and K are determined by component size.
The clearance between the components and the cavity is as follows:
For 12mm carrier tape: 0.5mm max.


Tape Size	W1	Р		В		F		ØJ		К		Н
Tape Size	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	1.0mm	1.3mm	0.6mm

RT9297

18.1.3 Pin 1 at Quadrant 2 for 7"

Package Type	Tape Size	Pocket Pitch	Reel Si	ze (A)	Units	Trailer	Leader	Reel Width (W2)	
r dokage rype	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min./Max. (mm)	
(V, W) QFN/DFN 3x3	12	8	180	7	1,500	160	600	12.4/14.4	

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

Tape Size	W1	Р		В		F		ØJ		К		Н
Tape Size	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	1.0mm	1.3mm	0.6mm

18.2 **Tape and Reel Packing**

Pin 1 at Quadrant 1 for 7" 18.2.1

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	3 reels per inner box Box A
2	HIC & Desiccant (1 Unit) inside	5	12 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	Reel			Box		Carton			
Package	Size	Units	Item	Reels	Units	Item	Boxes	Unit	
(V, W)		4 500	Box A	3	4,500	Carton A	12	54,000	
QFN/DFN 3x3	1	1,500	Box E	1	1,500	For Co	mbined or Partial I	Reel.	

18.2.2 Pin 1 at Quadrant 1 for 13"

Step	Photo/Description	Step	Photo/Description
1	Reel 13"	4	1 reel per inner box Box G
2	HIC & Desiccant (2 Unit) inside	5	6 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	R	eel		Box		Carton			
Package	Size	Units	Item	Reels	Units	Item	Boxes	Units	
(V, W) QFN and DFN 3x3	13"	2,500	Box G	1	2,500	Carton A	6	15,000	

18.2.3 Pin 1 at Quadrant 2 for 7"

Step	Photo/Description	Step	Photo/Description
1		4	
	Reel 7"		3 reels per inner box Box A
2		5	
	HIC & Desiccant (1 Unit) inside		12 inner boxes per outer box
3		6	
	Caution label is on backside of Al bag		Outer box Carton A

Container	Reel			Box		Carton			
Package	Size	Units	Item	Reels	Units	Item	Boxes	Unit	
(V, W)		4 500	Box A	3	4,500	Carton A	12	54,000	
QFN/DFN 3x3	1	1,500	Box E	1	1,500	For C	combined or Partial	Reel.	

18.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

19 Datasheet Revision History

Version	Date	Description	Item
04	2024/11/28	Modify	Changed the names of pin 6 and pin 7 to SW. General Description on page 1 -Added Temperature range Ordering Information on page 1 -Added note Footprint Information on page 16 -Added footprint information Packing Information on page 17 to 23 -Added packing information

www.richtek.com