

# **RT9058**

Sample & Buy

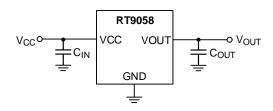
# 36V, 2µA I<sub>Q</sub>, 100mA Low Dropout Voltage Linear Regulator

### 1 General Description

The RT9058 is a low-dropout (LDO) linear voltage regulator featuring high input voltage, low dropout voltage, ultra-low operating current, and compact packaging. With a quiescent current as low as  $2\mu A$ , the RT9058 is particularly suitable for battery-powered devices.

The RT9058's stability is easily maintained with a variety of output capacitors, including tiny ceramic capacitors, across its wide input voltage range of 3.5V to 36V and load current range of 0mA to 100mA. The RT9058 offers commonly output voltages of 2.5V, 3V, 3.3V, 5V, 6V, 9V, and 12V.

The recommended junction temperature range is -40°C to 125°C, and the ambient temperature range is -40°C to 85°C.


## 2 Features

- 2µA Quiescent Current
- ±2% Output Accuracy
- 100mA Output Current
- 3.5V to 36V Input Voltage Range
- Dropout Voltage:
  - 0.35V at 10mA/VCC 5V
  - 0.5V at 10mA/VCC 3.5V
- Fixed Output Voltage: 2.5V, 3V, 3.3V, 5V, 6V, 9V, 12V
- Stable with Ceramic or Tantalum Capacitors
- Current Limit Protection
- Over-Temperature Protection
- SOT-23-3, SOT-89-3 Packages

## 3 Applications

- Portable, Battery Powered Equipment
- Ultra Low Power Microcontrollers
- Notebook Computers

## **4** Simplified Application Circuit



## **RT9058**



## 5 Ordering and Marking Information

| Part Number  | Output Voltage | Package      | Marking Information |
|--------------|----------------|--------------|---------------------|
| RT9058-25GV  |                | SOT-23-3     | 00=                 |
| RT9058-25GVL | 2.5V           | SOT-23-3 (L) | 2A=                 |
| RT9058-25GX  |                | SOT-89-3     | 00=                 |
| RT9058-30GV  |                | SOT-23-3     | 2H=                 |
| RT9058-30GVL | 3.0V           | SOT-23-3 (L) | 2G=                 |
| RT9058-30GX  |                | SOT-89-3     | 10=                 |
| RT9058-33GV  |                | SOT-23-3     | 03=                 |
| RT9058-33GVL | 3.3V           | SOT-23-3 (L) | 2B=                 |
| RT9058-33GX  |                | SOT-89-3     | 01=                 |
| RT9058-50GV  |                | SOT-23-3     | 06=                 |
| RT9058-50GVL | 5.0V           | SOT-23-3 (L) | 2C=                 |
| RT9058-50GX  |                | SOT-89-3     | 02=                 |
| RT9058-60GV  |                | SOT-23-3     | 0R=                 |
| RT9058-60GVL | 6.0V           | SOT-23-3 (L) | 2D=                 |
| RT9058-60GX  |                | SOT-89-3     | 0D=                 |
| RT9058-90GV  |                | SOT-23-3     | 0N=                 |
| RT9058-90GVL | 9.0V           | SOT-23-3 (L) | 2E=                 |
| RT9058-90GX  |                | SOT-89-3     | 0C=                 |
| RT9058-C0GV  |                | SOT-23-3     | 0M=                 |
| RT9058-C0GVL | 12.0V          | SOT-23-3 (L) | 2F=                 |
| RT9058-C0GX  |                | SOT-89-3     | 0B=                 |

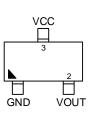
Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.





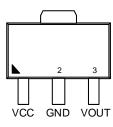
## **Table of Contents**

| 1  | General Description               | 1  |
|----|-----------------------------------|----|
| 2  | Features                          | 1  |
| 3  | Applications                      | 1  |
| 4  | Simplified Application Circuit    | 1  |
| 5  | Ordering and Marking Information  | 2  |
| 6  | Pin Configuration                 | 4  |
| 7  | Functional Pin Description        | 4  |
| 8  | Functional Block Diagram          | 4  |
| 9  | Absolute Maximum Ratings          | 5  |
| 10 | Recommended Operating Conditions  | 5  |
| 11 | Electrical Characteristics        | 6  |
| 12 | Typical Application Circuit       | 7  |
| 13 | Typical Operating Characteristics | 8  |
| 14 | Operation                         | 10 |
|    | 14.1 Error Amplifier              | 10 |
|    |                                   |    |


|    | 14.2   | Current Limit Protection           | 10 |
|----|--------|------------------------------------|----|
|    | 14.3   | Over-Temperature Protection        | 10 |
| 15 | Applic | ation Information                  | 11 |
|    | 15.1   | CIN and COUT Selection             | 11 |
|    | 15.2   | Dropout Voltage                    | 11 |
|    | 15.3   | Thermal Considerations             | 11 |
| 16 | Outlin | e Dimension                        | 13 |
| 17 | Footpi | rint Information                   | 15 |
| 18 | Packir | ng Information                     | 17 |
|    | 18.1   | Tape and Reel Data - SOT-23-3      | 17 |
|    | 18.2   | Tape and Reel Data - SOT-89-3      | 18 |
|    | 18.3   | Tape and Reel Packing - SOT-23-3   | 19 |
|    | 18.4   | Tape and Reel Packing - SOT-89-3   | 20 |
|    | 18.5   | Packing Material Anti-ESD Property | 21 |
| 19 | Datasł | neet Revision History              | 22 |



## 6 Pin Configuration

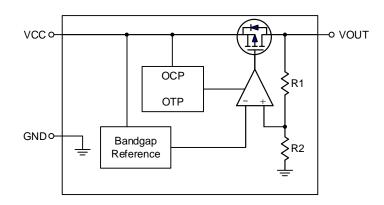

| GI<br>L | ND<br>] |
|---------|---------|
| :       | 3       |
|         | 2       |
|         | VOUT    |

SOT-23-3



SOT-23-3 (L-Type)

(TOP VIEW)




SOT-89-3

## 7 Functional Pin Description

|          | Pin No.           |          |          | Pin Function                                                                                                                                                                                                                                                                                                          |
|----------|-------------------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SOT-23-3 | SOT-23-3 (L-Type) | SOT-89-3 | Pin Name | FinFunction                                                                                                                                                                                                                                                                                                           |
| 1        | 3                 | 1        | VCC      | Supply input. A general $1\mu F$ ceramic capacitor should be placed as close as possible to this pin for better noise rejection.                                                                                                                                                                                      |
| 2        | 2                 | 3        | VOUT     | LDO output pins. A ceramic capacitor of $2.2\mu$ F or<br>larger (with $1\mu$ F or greater effective capacitance)<br>is required for stability. The output capacitor<br>should be placed as close to the device as<br>possible to minimize the resistive and inductive<br>impedance between the VOUT pin and the load. |
| 3        | 1                 | 2        | GND      | The exposed pad should be soldered to a large<br>PCB area and connected to GND to achieve<br>maximum power dissipation.                                                                                                                                                                                               |

## 8 Functional Block Diagram





### 9 Absolute Maximum Ratings

| ( <u>Note 1</u> )                                     |                |
|-------------------------------------------------------|----------------|
| VCC to GND                                            | -0.3V to 40V   |
| VOUT to GND                                           |                |
| RT9058-C0/RT9058-60/RT9058-90                         | -0.3V to 15V   |
| RT9058-25/RT9058-30/RT9058-33/RT9058-50               | -0.3V to6V     |
| VOUT to VCC                                           | -40V to 0.3V   |
| <ul> <li>Power Dissipation, PD @ TA = 25°C</li> </ul> |                |
| SOT-23-3                                              | 0.41W          |
| SOT-89-3                                              | 20.6W          |
| Package Thermal Resistance ( <u>Note 2</u> )          |                |
| SOT-23-3, θJA                                         | 243.3°C/W      |
| SOT-89-3, θJA                                         | 167.7°C/W      |
| Lead Temperature (Soldering, 10 sec.)                 | 260°C          |
| Junction Temperature                                  | –40°C to 150°C |
| Storage Temperature Range                             | –65°C to 150°C |
| ESD Susceptibility ( <u>Note 3</u> )                  |                |
| HBM (Human Body Model)                                | 2kV            |
|                                                       |                |

- **Note 1**. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- **Note 2**.  $\theta_{JA}$  is measured under natural convection (still air) at  $T_A = 25^{\circ}C$  with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard

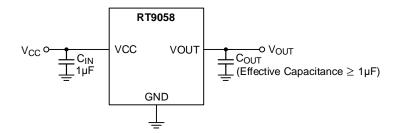
Note 3. Devices are ESD sensitive. Handling precautions are recommended.

## **10** Recommended Operating Conditions

#### (<u>Note 4</u>)

| Supply Input Voltage, VCC  | - 3.5V to 36V   |
|----------------------------|-----------------|
| Ambient Temperature Range  | - −40°C to 85°C |
| Junction Temperature Range | 40°C to 125°C   |

Note 4. The device is not guaranteed to function outside its operating conditions.

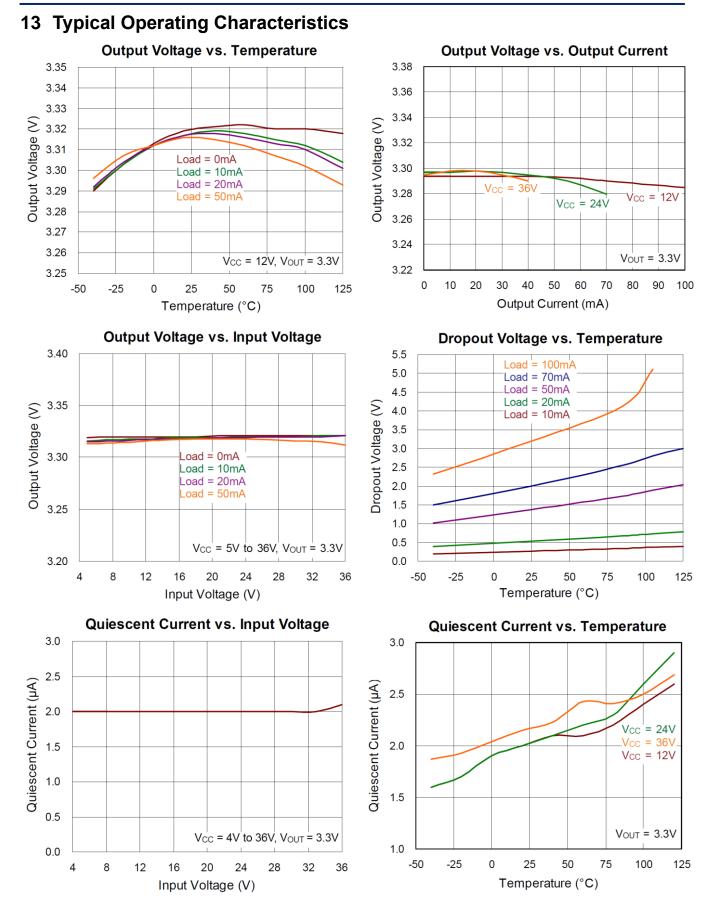

### **11 Electrical Characteristics**

((V<sub>OUT</sub> +1) < V<sub>CC</sub> < 36V, T<sub>A</sub> = 25°C, unless otherwise specified.)

| Parameter                                  | Symbol | Test Conditions                                                                                                                       | Min  | Тур          | Max | Unit  |
|--------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------|------|--------------|-----|-------|
| Output Voltage Range                       |        |                                                                                                                                       | 2.5  |              | 12  | V     |
| DC Output Accuracy                         |        | ILOAD = 10mA                                                                                                                          | -2   |              | 2   | %     |
| Dropout Voltage                            |        | ILOAD = 10mA                                                                                                                          |      | 0.3          | 0.5 | V     |
|                                            |        | $\label{eq:lload} \begin{array}{l} \text{ILOAD} = 0\text{mA}, \ \text{VOUT} \leq 5.5\text{V}, \\ \text{VCC} = 12\text{V} \end{array}$ |      | 2            | 3.5 |       |
| VCC Quiescent Current                      |        | $I_{LOAD} = 0mA, V_{OUT} > 5.5V,$<br>$V_{CC} = 12V$                                                                                   |      | 3.5          | 5   | μΑ    |
| Line Regulation                            |        | I <sub>LOAD</sub> = 10mA                                                                                                              |      | 0.2          | 0.5 | %     |
| Load Regulation                            |        | $0 < I_{LOAD} < 50 mA$ , VCC = VOUT + 2V                                                                                              | -0.5 |              | 0.5 | %     |
| Output Current Limit                       |        | VOUT = 0.5 x VOUT (normal)                                                                                                            | 115  | 175          | 300 | mA    |
| Dower Supply Dejection Date                | PSRR   | f = 100Hz, IOUT = 25mA                                                                                                                |      | -70          |     |       |
| Power Supply Rejection Rate                | PORK   | f = 100kHz, I <sub>OUT</sub> = 25mA                                                                                                   |      | -40          |     | dB    |
| Output Noise Voltage<br>BW = 10Hz - 100kHz | Von    | Cουτ = 1μF                                                                                                                            |      | 27 х<br>Vouт |     | μVRMS |
| Thermal Shutdown<br>Temperature            |        | Iload = 30mA                                                                                                                          |      | 150          |     | °C    |
| Thermal Shutdown Hysteresis                |        |                                                                                                                                       |      | 20           | -   | °C    |

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. www.richtek.com

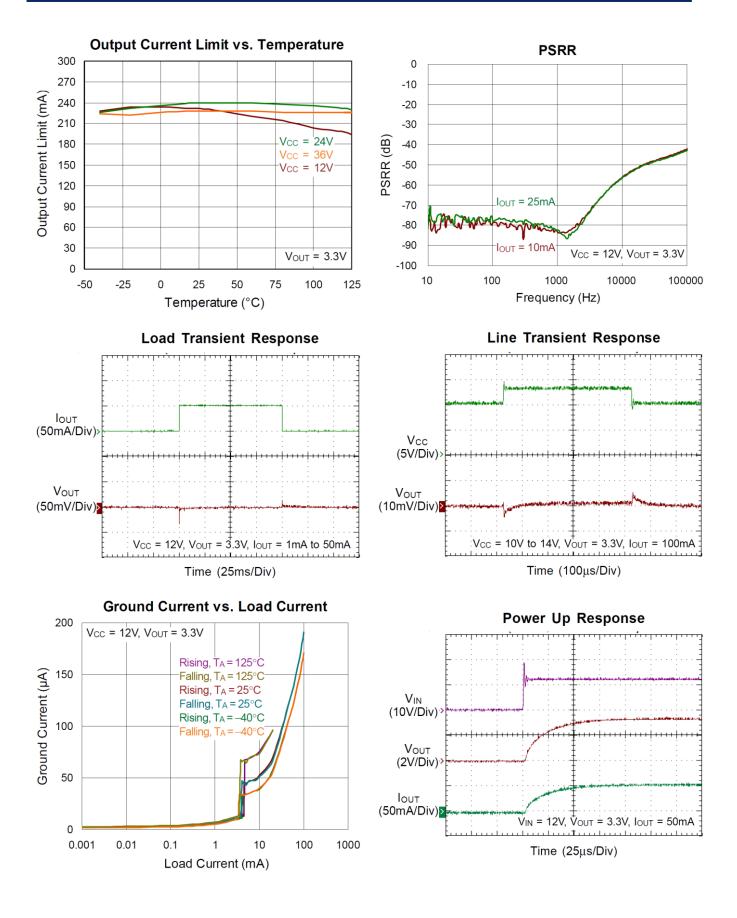
## **12 Typical Application Circuit**




For stability requirements, COUT must have a minimum value of  $1\mu$ F for the RT9058, and this capacitance must be maintained across the entire expected operating temperature range. It should also be located as close as possible to the regulator.

**Note 5**. All input and output capacitive parameters recommended here refer to the effective capacitance. It is necessary to account for any derating effects, such as DC bias, to accurately consider the effective capacitance.

| Component | Description           | Vendor P/N                 |
|-----------|-----------------------|----------------------------|
| Cin       | 1µF, 50V, X7R, 1206   | GCJ31CR71H105KA12 (Murata) |
| Соит      | 2.2μF, 16V, X7R, 0805 | GGM21BR71C225KA64 (Murata) |


#### **Table 1. Recommended External Components**



Copyright © 2024 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation.

 www.richtek.com
 DS9058-03
 March 2024

**RT9058** 



**RT9058** 

## 14 Operation

The RT9058 is a high-input-voltage linear regulator designed specifically to minimize the need for external components. The input voltage range extends from 3.5V to 36V. The minimum output capacitance required for stable operation is an effective  $1\mu$ F, considering the capacitor's temperature and voltage coefficient. For normal power-on operation, the slew rate of the VCC rising time should be slower than 45mV/µs.

### 14.1 Error Amplifier

The Error Amplifier compares the feedback voltage from an internal voltage divider with an internal reference voltage. It then adjusts the gate voltage of the P-MOSFET to maintain output voltage regulation.

### 14.2 Current Limit Protection

The RT9058 features a current limit function to prevent damage from output overload or short-circuit conditions. The output current is monitored by an internal sensing transistor.

### 14.3 Over-Temperature Protection

The over-temperature protection function shuts off the P-MOSFET when the internal junction temperature exceeds 150°C (typical) or the output current exceeds 4mA. Once the junction temperature decreases by approximately 20°C, the regulator will automatically resume normal operation.

### **15** Application Information

### (Note 6)

Like any low-dropout linear regulator, the RT9058 requires proper selection of external input and output capacitors for stability and performance. An input capacitor of 1µF or larger should be used and placed close to the IC's VCC and GND pins. Any output capacitor that meets the minimum Equivalent Series Resistance (ESR) of  $1m\Omega$  and has an effective capacitance greater than 1µF may be used. It should be placed close to the IC's VOUT and GND pins.

#### 15.1 **CIN and COUT Selection**

The RT9058 is designed to support low-series-resistance (ESR) ceramic capacitors. Because of their good capacitive stability across different temperatures, X7R, X5R, and COG-rated ceramic capacitors are recommended. The use of Y5V-rated capacitors is not recommended due to their large capacitance variations.

However, the capacitance of ceramic capacitors varies with operating voltage and temperature, which design engineers need to consider. It is customary to derate ceramic capacitors by 50%. To ensure stability, an output ceramic capacitor of 2.2µF or greater (or 1µF of effective capacitance) is suggested. The input capacitor should be selected to minimize the transient voltage drop during load current steps; at least a 2.2µF input capacitor is highly recommended to maintain minimal input impedance. If there is significant inductance in the traces between the RT9058 input pin and the power supply, a fast load transient may induce voltage ringing at the VIN level that exceeds the device's absolute maximum rating, potentially damaging it. Adding more input capacitors can help to restrict the ringing and keep it within the device's absolute maximum ratings. These capacitors should be placed as close as possible to the pins for optimal performance and stability.

#### 15.2 **Dropout Voltage**

The dropout voltage refers to the voltage difference between the VIN and VOUT pins while operating at a specific output current. The dropout voltage VDROP also can be expressed as the voltage drop on the pass-FET at a specific output current (IRATED) when the pass-FET is fully operating in the ohmic region and can be characterized as a resistance RDS(ON). Thus, the dropout voltage can be defined as VDROP = VIN - VOUT = RDS(ON) X IRATED. For normal operation, the suggested LDO operating range is VIN > VOUT + VDROP to ensure good transient response and PSRR performance. However, operation in the ohmic region will severely degrade the performance severely.

#### 15.3 **Thermal Considerations**

The junction temperature should never exceed the absolute maximum junction temperature T<sub>J(MAX)</sub>, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

### $PD(MAX) = (TJ(MAX) - TA) / \theta JA$

where T<sub>J</sub>(MAX) is the maximum junction temperature, TA is the ambient temperature, and  $\theta_{JA}$  is the junction-toambient thermal resistance.

# **RT9058**

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance,  $\theta_{JA}$ , is highly package dependent. For a SOT-23-3 package, the thermal resistance,  $\theta_{JA}$ , is 243.3°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. For a SOT-89-3 package, the thermal resistance,  $\theta_{JA}$ , is 167.7°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. For a SOT-89-3 package, the thermal resistance,  $\theta_{JA}$ , is 167.7°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as below:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (243.3^{\circ}C/W) = 0.41W$  for a SOT-23-3 package.

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C) / (167.7^{\circ}C/W) = 0.6W$  for a SOT-89-3 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed  $T_{J(MAX)}$  and the thermal resistance,  $\theta_{JA}$ . The derating curves in <u>Figure 1</u> allow the designer to see the effect of rising ambient temperature on the maximum power dissipation.

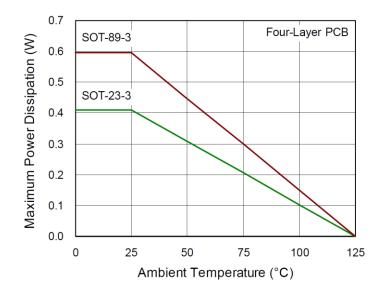
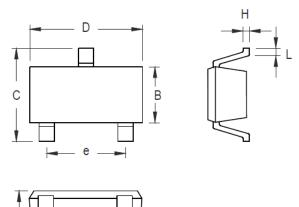
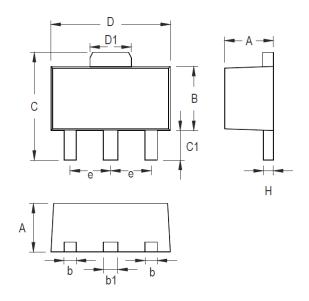




Figure 1. Derating Curve of Maximum Power Dissipation

**Note 6.** The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.



### **16 Outline Dimension**

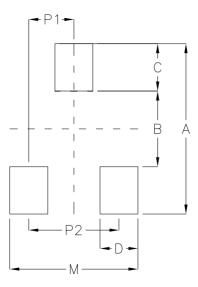





| Symbol | Dimensions I | n Millimeters | <b>Dimensions In Inches</b> |       |  |
|--------|--------------|---------------|-----------------------------|-------|--|
| Symbol | Min          | Max           | Min                         | Max   |  |
| А      | 0.889        | 1.295         | 0.035                       | 0.051 |  |
| A1     | 0.000        | 0.152         | 0.000                       | 0.006 |  |
| В      | 1.397        | 1.803         | 0.055                       | 0.071 |  |
| b      | 0.356        | 0.508         | 0.014                       | 0.020 |  |
| С      | 2.591        | 2.997         | 0.102                       | 0.118 |  |
| D      | 2.692        | 3.099         | 0.106                       | 0.122 |  |
| е      | 1.803        | 2.007         | 0.071                       | 0.079 |  |
| н      | 0.080        | 0.254         | 0.003                       | 0.010 |  |
| L      | 0.300        | 0.610         | 0.012                       | 0.024 |  |

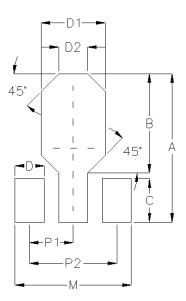
SOT-23-3 Surface Mount Package






| Symbol | Dimensions | In Millimeters | <b>Dimensions In Inches</b> |       |  |
|--------|------------|----------------|-----------------------------|-------|--|
| Symbol | Min        | Max            | Min                         | Max   |  |
| А      | 1.397      | 1.600          | 0.055                       | 0.063 |  |
| b      | 0.356      | 0.483          | 0.014                       | 0.019 |  |
| В      | 2.388      | 2.591          | 0.094                       | 0.102 |  |
| b1     | 0.406      | 0.533          | 0.016                       | 0.021 |  |
| С      | 3.937      | 4.242          | 0.155                       | 0.167 |  |
| C1     | 0.787      | 1.194          | 0.031                       | 0.047 |  |
| D      | 4.394      | 4.597          | 0.173                       | 0.181 |  |
| D1     | 1.397      | 1.753          | 0.055                       | 0.069 |  |
| е      | 1.448      | 1.549          | 0.057                       | 0.061 |  |
| Н      | 0.356      | 0.432          | 0.014                       | 0.017 |  |

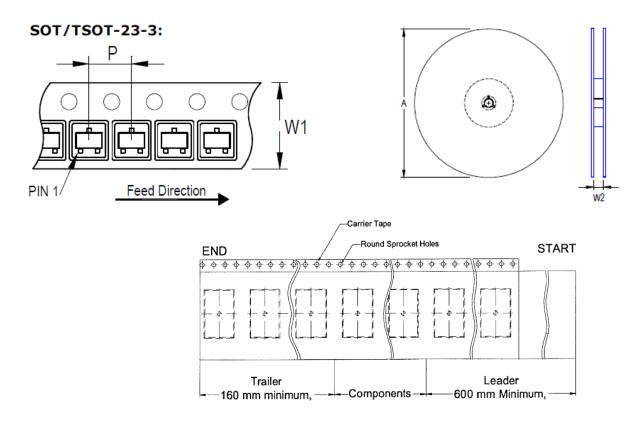
3-Lead SOT-89 Surface Mount Package



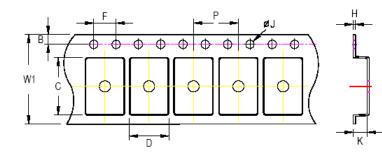

## **17 Footprint Information**



| Dealvage       | Number of | Footprint Dimension (mm) |      |      |      |      |      |      | Talaranaa |
|----------------|-----------|--------------------------|------|------|------|------|------|------|-----------|
| Package        | Pin       | P1                       | P2   | А    | В    | С    | D    | М    | Tolerance |
| TSOT-23/SOT-23 | 3         | 0.95                     | 1.90 | 3.60 | 1.60 | 1.00 | 0.80 | 2.70 | ±0.10     |







| Dookogo | Number of           |      | Footprint Dimension (mm) |      |      |      |      |      |      | Talaranaa |           |
|---------|---------------------|------|--------------------------|------|------|------|------|------|------|-----------|-----------|
| Раскаде | Package Pin P1 P2 A |      |                          |      | В    | С    | D    | D1   | D2   | М         | Tolerance |
| SOT-89  | 3                   | 1.50 | 3.00                     | 5.10 | 3.40 | 1.50 | 1.00 | 2.20 | 1.00 | 4.00      | ±0.10     |

### **18 Packing Information**

18.1 Tape and Reel Data - SOT-23-3



| Package Type      | Tape Size | Pocket Pitch | Reel Si | ze (A) | Units    | Trailer | Leader | Reel Width (W2) |
|-------------------|-----------|--------------|---------|--------|----------|---------|--------|-----------------|
|                   | (W1) (mm) | (P) (mm)     | (mm)    | (in)   | per Reel | (mm)    | (mm)   | Min./Max. (mm)  |
| SOT/TSOT-<br>23-3 | 8         | 4            | 180     | 7      | 3,000    | 160     | 600    | 8.4/9.9         |

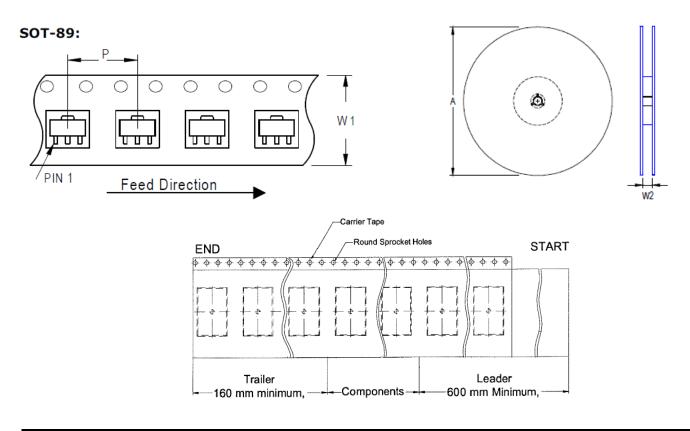


C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

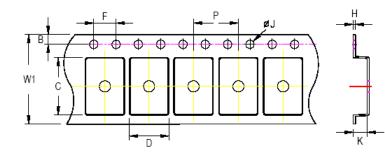
- For 8mm carrier tape: 0.5mm max.

| Tape Size | W1    | Р     |       | В      |        | F     |       | ØJ    |       | Н     |
|-----------|-------|-------|-------|--------|--------|-------|-------|-------|-------|-------|
| Tape Size | Max.  | Min.  | Max.  | Min.   | Max.   | Min.  | Max.  | Min.  | Max.  | Max.  |
| 8mm       | 8.3mm | 3.9mm | 4.1mm | 1.65mm | 1.85mm | 3.9mm | 4.1mm | 1.5mm | 1.6mm | 0.6mm |

 Copyright © 2024 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation.


 DS9058-03
 March 2024

 www.richtek.com


## **RT9058**

RICHTEK

18.2 Tape and Reel Data - SOT-89-3



| Package Type | Tape Size | Pocket Pitch | Reel Size (A) |      | Units    | Trailer | Leader | Reel Width (W2) |  |
|--------------|-----------|--------------|---------------|------|----------|---------|--------|-----------------|--|
| Гаскаде Туре | (W1) (mm) | (P) (mm)     | (mm)          | (in) | per Reel | (mm)    | (mm)   | Min./Max. (mm)  |  |
| SOT-89       | 12        | 8            | 180           | 7    | 1,000    | 160     | 600    | 12.4/14.4       |  |



C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

| Tape Size | W1     | Р     |       | В      |        | F     |       | ØJ    |       | Н     |
|-----------|--------|-------|-------|--------|--------|-------|-------|-------|-------|-------|
| Tape Size | Max.   | Min.  | Max.  | Min.   | Max.   | Min.  | Max.  | Min.  | Max.  | Max.  |
| 12mm      | 12.3mm | 7.9mm | 8.1mm | 1.65mm | 1.85mm | 3.9mm | 4.1mm | 1.5mm | 1.6mm | 0.6mm |

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. www.richtek.com DS9058-03

**RT9058** 

#### 18.3 Tape and Reel Packing - SOT-23-3

| Step | Photo/Description                      | Step | Photo/Description                  |
|------|----------------------------------------|------|------------------------------------|
| 1    | Reel 7"                                | 4    | 3 reels per inner box <b>Box A</b> |
| 2    | HIC & Desiccant (1 Unit) inside        | 5    | 12 inner boxes per outer box       |
| 3    | Caution label is on backside of Al bag | 6    | Outer box Carton A                 |

| Container     | R                    | eel   |       | Box       |       | Carton                        |       |         |  |
|---------------|----------------------|-------|-------|-----------|-------|-------------------------------|-------|---------|--|
| Package       | Size                 | Units | Item  | Reels     | Units | Item                          | Boxes | Unit    |  |
|               | SOT/TEOT 22 2 7" 2 0 | 2 000 | Box A | 3         | 9,000 | Carton A                      | 12    | 108,000 |  |
| SOT/TSOT-23-3 | 7                    | 3,000 | Box E | E 1 3,000 |       | For Combined or Partial Reel. |       |         |  |

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.





#### 18.4 Tape and Reel Packing - SOT-89-3

| Step | Photo/Description                      | Step | Photo/Description                  |
|------|----------------------------------------|------|------------------------------------|
| 1    | Reel 7"                                | 4    | 3 reels per inner box <b>Box A</b> |
| 2    | HIC & Desiccant (1 Unit) inside        | 5    | 12 inner boxes per outer box       |
| 3    | Caution label is on backside of Al bag | 6    | Outer box Carton A                 |

| Container | R               | eel   |               | Box   |       | Carton           |          |        |
|-----------|-----------------|-------|---------------|-------|-------|------------------|----------|--------|
| Package   | Size            | Units | Item          | Reels | Units | Item             | Boxes    | Unit   |
| 00 TOO    | SOT-89 7" 1,000 | 1 000 | Box A         | 3     | 3,000 | Carton A         | 12       | 36,000 |
| 501-89    |                 | Box E | Box E 1 1,000 |       |       | mbined or Partia | al Reel. |        |

Copyright © 2024 Richtek Technology Corporation. All rights reserved.





#### 18.5 Packing Material Anti-ESD Property

| Surface<br>Resistance | Aluminum Bag                        | Reel                                | Cover tape                          | Carrier tape                        | Tube                                | Protection Band                     |
|-----------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| $\Omega/cm^2$         | 10 <sup>4</sup> to 10 <sup>11</sup> |

### **Richtek Technology Corporation**

14F, No. 8, Tai Yuen 1<sup>st</sup> Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

#### RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.





## **19 Datasheet Revision History**

| Version | Date      | Description | Item                                                                                                                                                                                                         |
|---------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 03      | 2024/3/26 | Modify      | General Description on P1<br>Functional Pin Description on P4<br>Typical Application Circuit on P7<br>Application Information on P11<br>Footprint Information on P15, 16<br>Packing Information on P17 to 21 |