

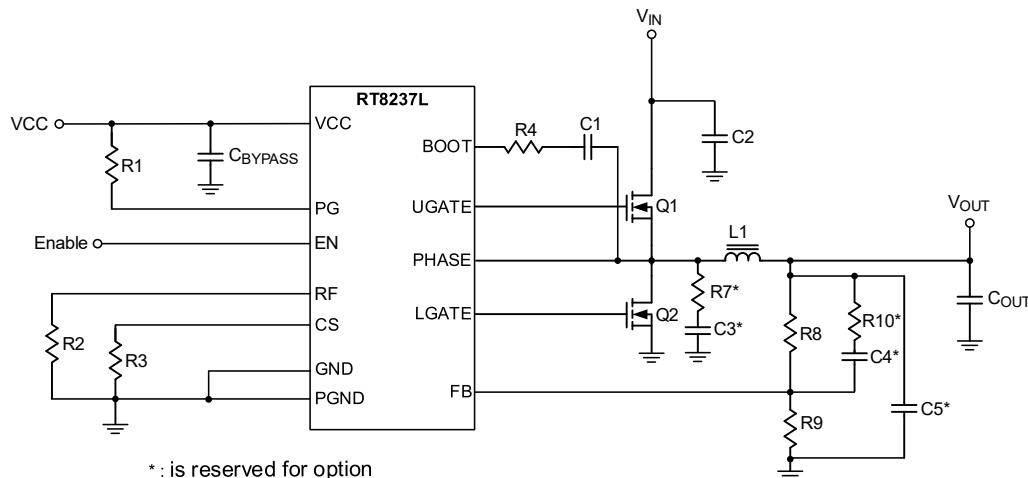
High Efficiency Single Synchronous Buck PWM Controller

1 General Description

The RT8237L PWM controller provides high efficiency, excellent transient response, and high DC output accuracy needed for stepping down high-voltage batteries to generate low-voltage CPU core, I/O, and chipset RAM supplies in notebook computers.

The constant on-time PWM control scheme handles wide input/output voltage ratios with ease and provides 100ns “instant-on” response to load transients while maintaining a relatively constant switching frequency.

The RT8237L achieves high efficiency at reduced cost by eliminating the current sense resistor found in traditional current-mode PWM controllers. Its efficiency is further enhanced by the ability to drive large synchronous rectifier MOSFETs and to enter diode emulation mode at light load conditions. The buck conversion allows this device to directly step down high-voltage batteries at the highest possible efficiency. The preset frequency selections minimize the effort required for new designs. The RT8237L is intended for CPU cores, chipsets, DRAM, or other low voltage supplies down to 0.7V. The RT8237L is available in the VQFN-16L 3x3 package. The recommended junction temperature range is -40°C to 125°C and ambient temperature range is -40°C to 85°C .

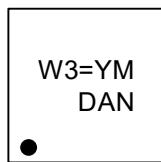

2 Features

- Wide Input Voltage Range: 4.5V to 26V
- Output Voltage Range: 0.7V to 3.3V
- Built-In 0.5% 0.7V Reference Voltage
- Quick Load-Step Response within 100ns
- 4700ppm/ $^{\circ}\text{C}$ Current Source for Current Limit RDS(ON)
- Adjustable Current Limit with Low-Side MOSFET
- 4 Selectable Frequency Settings
- Soft-Start Control
- Drives Large Synchronous-Rectifier MOSFETs
- Integrated Boot Switch
- Built-In OCP/UVP
- Over-Temperature Protection
- Power-Good Indicator

3 Applications

- Notebook Computers
- CPU Core Power Supply
- Chipset/RAM Power Supply Down to 0.7V
- Generic DC-DC Power Regulator

4 Simplified Application Circuit


5 Ordering Information

RT8237L□□

Package Type⁽¹⁾
QV : VQFN-16L 3x3 (V-Type)

Lead Plating System
G: Richtek Green Policy Compliant⁽²⁾

6 Marking Information

W3= : Product Code
YMDAN : Date Code

Note 1.

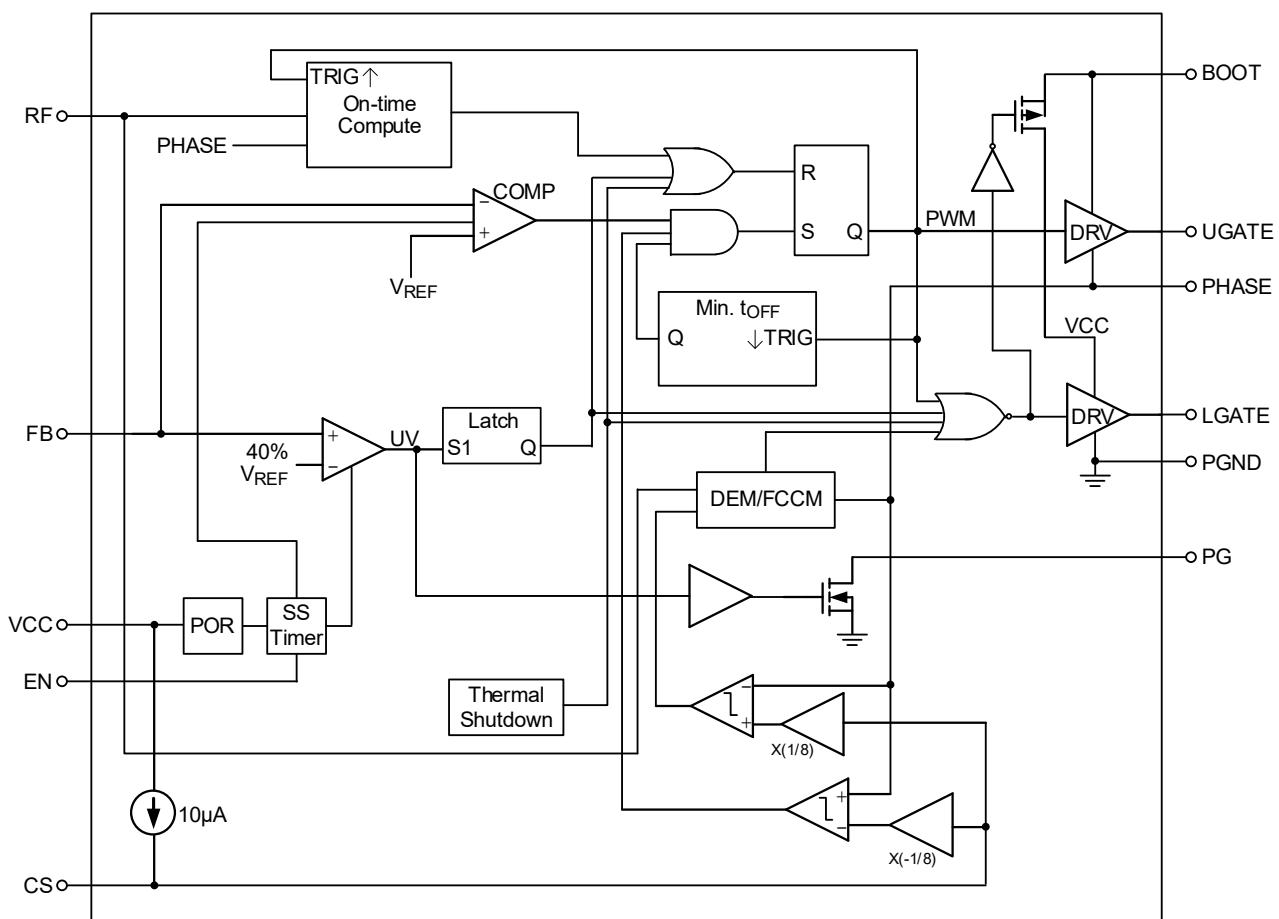
- Marked with ⁽¹⁾ indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.
- Marked with ⁽²⁾ indicated: Richtek products are Richtek Green Policy compliant.

Table of Contents

1	General Description	1
2	Features	1
3	Applications	1
4	Simplified Application Circuit	1
5	Ordering Information	2
6	Marking Information	2
7	Pin Configuration	4
8	Functional Pin Description	4
9	Functional Block Diagram	6
10	Absolute Maximum Ratings	7
11	Recommended Operating Conditions	8
12	Electrical Characteristics	8
13	Typical Application Circuit	10
14	Typical Operating Characteristics	11
15	Operation	13
15.1	Power-On Reset, UVLO	13
15.2	Soft-Start	13
15.3	Mode Selection	13
15.4	Current Limit Setting	13
15.5	Undervoltage Protection	13
16	Application Information	14
16.1	On-Time Control (TON/MODE)	14
16.2	Enable and Disable	14
16.3	POR, UVLO and Soft-Start	14
16.4	Mode Selection (RF) Operation	14
16.5	Diode-Emulation Mode (R_{RF} connected to GND)	15
16.6	Forced-CCM Mode (FCCM)	15
16.7	Current Limit Setting (CS)	15
16.8	MOSFET Gate Driver	16
16.9	Power Good Output (PG)	17
16.10	Output Undervoltage Protection (UVP)	17
16.11	Over-Temperature Protection (OTP)	17
16.12	Output Voltage Setting (FB)	17
16.13	Inductor Selection	18
16.14	Input Capacitor Selection	18
16.15	Output Capacitor Selection	18
16.16	MOSFET Selection	19
16.17	Thermal Considerations	19
16.18	Layout Considerations	20
17	Outline Dimension	21
18	Footprint Information	22
19	Packing Information	23
19.1	Tape and Reel Data	23
19.2	Tape and Reel Packing	24
19.3	Packing Material Anti-ESD Property	25
20	Datasheet Revision History	26

7 Pin Configuration

(TOP VIEW)


VQFN-16L 3x3

8 Functional Pin Description

Pin No.	Pin Name	Pin Function
1	CS	Current-limit threshold setting input. Connect a setting resistor to GND, and the current-limit threshold is equal to 1/8 of the voltage at this pin.
2	EN	Enable control input. Pulling this pin voltage higher than 1.8V will enable this PWM controller. Pulling this pin to GND will disable this PWM controller. Do not leave this pin floating, and avoid driving this pin voltage higher than V _{VCC} at any time.
3	FB	V _{OUT} feedback voltage input. Connect FB to a resistor voltage divider from V _{OUT} to GND to adjust the output from 0.7V to 3.3V
4	RF	Switching frequency selection. Connect a resistor to select switching frequency as shown in Electrical Characteristics . The switching frequency is detected and latched after startup. This pin also controls diode emulation mode or forced CCM selection. Pull down to GND with resistor: Diode Emulation Mode. Connect to PG with resistor: Forced CCM after PG becomes high.
5	NC	No Connection.
6	VCC	Supply voltage input. This pin provides the power for the buck controller, the low side driver, and the bootstrap circuit for high-side driver. Bypass to GND with a 1 μ F ceramic capacitor.
7, 17 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.
8	PGND	Power ground for low-side MOSFET.
9	NC	No Connection.
10	NC	No Connection.
11	LGATE	Gate drive output for low side external MOSFET.
12	PHASE	External inductor connection pin for the PWM controller. It behaves as the current sense comparator input for low-side MOSFET R _{DS(ON)} sensing and reference voltage for on time generation.

Pin No.	Pin Name	Pin Function
13	UGATE	Gate drive output for high-side external MOSFET.
14	BOOT	Bootstrap supply for high-side external MOSFET. Connect the bootstrap capacitor and bootstrap resistor from the BOOT pin to the PHASE pin through a short and low inductance path. It is strongly recommended to use a 0Ω bootstrap resistor in series with a bootstrap capacitor (0.1μF). For details on how to use it, refer to the application information.
15	NC	No Connection.
16	PG	Power-good indicator is an open-drain output. This pin is pulled low as UVP, OTP, EN low, or output voltage is not regulated (such as before soft-start). An external pull-up resistor to VCC or another external rail is required, and the recommended pull-up resistor is 100kΩ. Do not pull the PG voltage higher than 6V.

9 Functional Block Diagram

10 Absolute Maximum Ratings

(Note 2)

• VCC, FB, PG, EN, CS, RF to GND-----	-0.3V to 6V
• BOOT to GND	
DC-----	-0.3V to 36V
<100ns -----	-5V to 42V
• BOOT to PHASE	
DC-----	-0.3V to 6V
<100ns -----	-5V to 7.5V
• PHASE to GND	
DC-----	-5V to 30V
<100ns -----	-10V to 42V
• UGATE to GND	
DC-----	-5V to 36V
<100ns -----	-10V to 42V
• UGATE to PHASE-----	-0.3V to 6V
DC-----	-0.3V to 6V
<100ns -----	-5V to 7.5V
• LGATE to GND-----	-0.3V to 6V
DC-----	-0.3V to 6V
<100ns -----	-5V to 7.5V
• Power Dissipation, PD @ TA = 25°C	
VQFN-16L 3x3 -----	3.33W
• Package Thermal Resistance (Note 3)	
VQFN-16L 3x3, θ_{JA} -----	30°C/W
VQFN-16L 3x3, θ_{JC} -----	7.5°C/W
• Lead Temperature (Soldering, 10 sec.)-----	260°C
• Junction Temperature -----	150°C
• Storage Temperature Range -----	-65°C to 150°C
• ESD Susceptibility	
HBM (Human Body Model)-----	2kV

Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 3. θ_{JA} is measured under natural convection (still air) at $T_A = 25^\circ\text{C}$ with the component mounted on a high effective-thermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.

11 Recommended Operating Conditions

([Note 4](#))

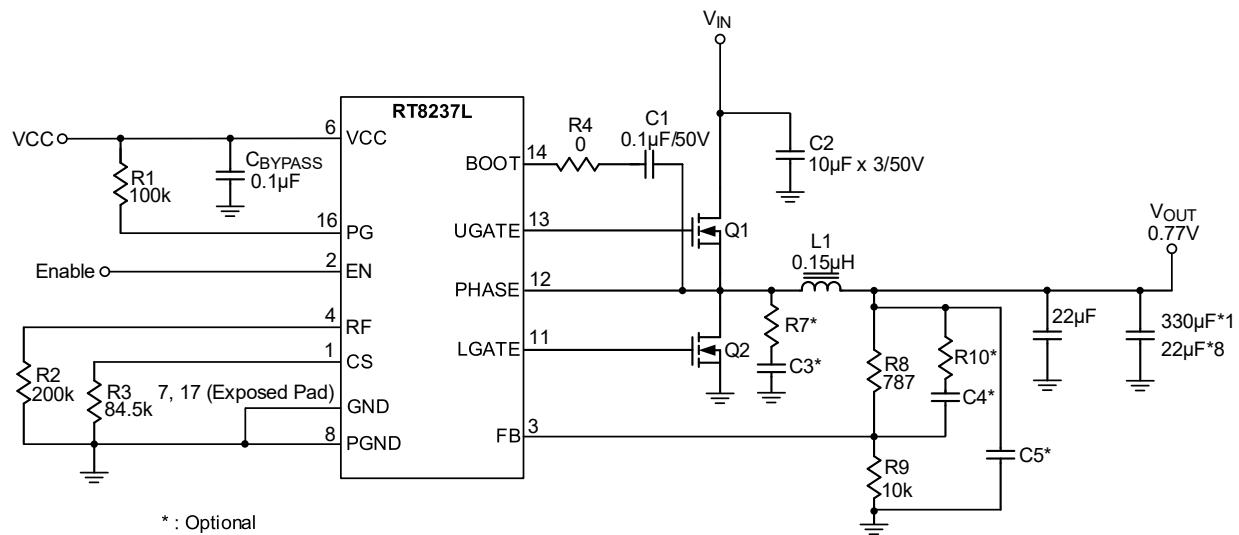
- Supply Input Voltage ----- 4.5V to 26V
- Control Voltage, VCC ----- 4.5V to 5.5V
- Ambient Temperature Range ----- -40°C to 85°C
- Junction Temperature Range ----- -40°C to 125°C

Note 4. Devices are ESD sensitive. Handling precautions are recommended.

12 Electrical Characteristics

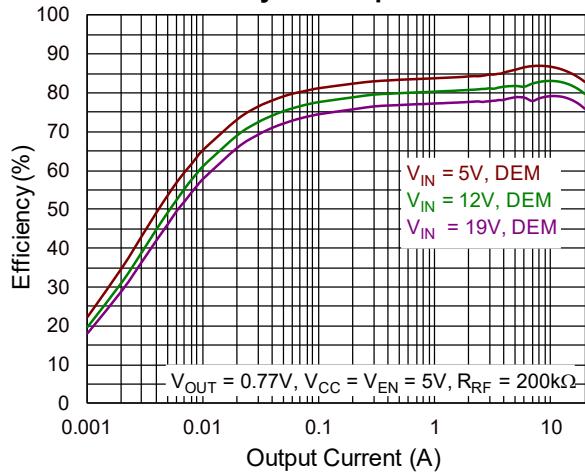
(VCC = 5V, TA = 25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Input Power Supply						
VCC Quiescent Supply Current	I _Q	FB forced above the regulation point, V _{EN} = 5V	--	0.5	1.25	mA
VCC Shutdown Current	I _{SHDN}	VCC current, V _{EN} = 0V	--	--	1	µA
CS Shutdown Current		CS pull to GND	--	--	1	µA
FB Error Comparator Threshold	V _{REF}	DEM	0.7005	0.704	0.7075	V
		DEM, TA = -40°C to 85°C (Note 6)	0.697	0.704	0.711	
FB INPUT BIAS CURRENT		V _{FB} = 0.735V	-1	0.01	1	µA
V _{OUT} Voltage Range			0.7	--	3.3	V
Switching Frequency	f _{SW}	R _{RF} = 470kΩ (Note 7)	--	435	--	kHz
		R _{RF} = 200kΩ (Note 7)	--	510	--	
		R _{RF} = 100kΩ (Note 7)	--	570	--	
		R _{RF} = 39kΩ (Note 7)	--	645	--	
Minimum Off-Time	t _{OFF_MIN}		130	230	330	ns
Soft-Start						
V _{OUT} Soft-Start	t _{SS}	From EN = high to V _{OUT} = 95%	--	1.9	--	ms
Current Sensing						
CS Source Current	I _{CS}		9	10	11	µA
CS Source Current TC			--	4700	--	ppm/°C
Zero Crossing Threshold		DEM	-10	--	5	mV
Current-Limit Threshold	V _{LIM}	GND – PHASE, V _{CS} = 2.4V	280	300	320	mV
		GND – PHASE, V _{CS} = 1.6V	185	200	215	
		GND – PHASE, V _{CS} = 0.4V	40	50	60	
Negative Current-Limit Threshold		PHASE – GND, V _{CS} = 2.4V	--	300	--	mV
		PHASE – GND, V _{CS} = 1.6V	--	200	--	
		PHASE – GND, V _{CS} = 0.4V	--	50	--	

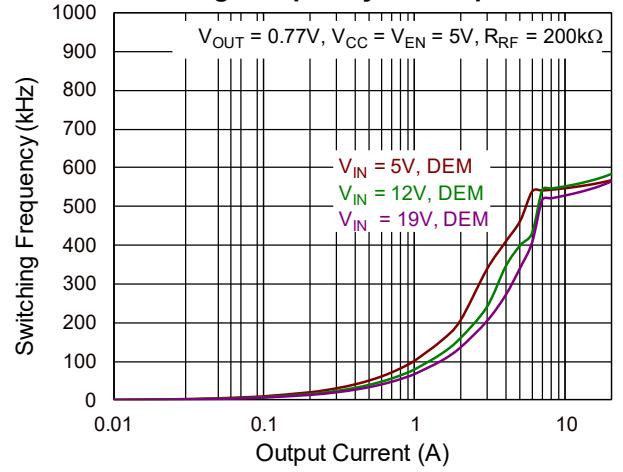

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Protection Function						
Output UV Threshold		With respect to error comparator threshold	35	40	45	%
VCC Undervoltage-Lockout Threshold	UVLO	Falling edge, hysteresis = 100mV, PWM disabled below this level	3.7	3.9	4.1	V
Over-Temperature Protection Threshold	TOTP		--	150	--	°C
Driver On Resistance						
UGATE Drive Source	RUGATEsr	BOOT – PHASE forced to 5V	--	1.8	3.6	Ω
UGATE Drive Sink	RUGATEsk	BOOT – PHASE forced to 5V	--	1.2	2.4	Ω
LGATE Drive Source	RLGATEsr	LGATE, High State	--	1.8	3.6	Ω
LGATE Drive Sink	RLGATEsk	LGATE, Low State	--	0.8	1.6	Ω
Dead Time		LGATE Rising (VPHASE = 1.5V)	--	30	--	ns
		UGATE Rising	--	30	--	
Internal Boost Charging Switch On Resistance		VCC to BOOT, 10mA	--	--	80	Ω
EN Threshold						
EN Input Voltage Rising Threshold	V _{EN_R}		1.8	--	--	V
EN Input Voltage Falling Threshold	V _{EN_F}		--	--	0.5	V
Mode Decision						
VRF Threshold for DEM			--	--	0.5	V
VRF Threshold for FCCM			1.8	--	--	V
PG						
PG Blanking Time		From EN signal going high	--	3.7	--	ms
Output Low Voltage		I _{SINK} = 1mA	--	--	0.4	V
Leakage Current		High State, forced to 5V	--	--	1	μA

Note 5. The device is not guaranteed to function outside its operating conditions.

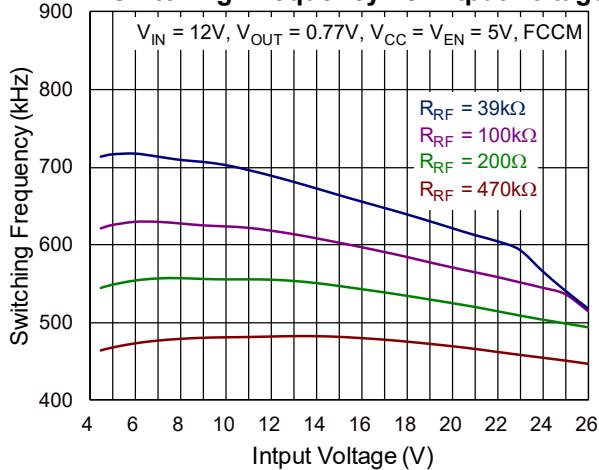
Note 6. Guaranteed by design. Not production tested.

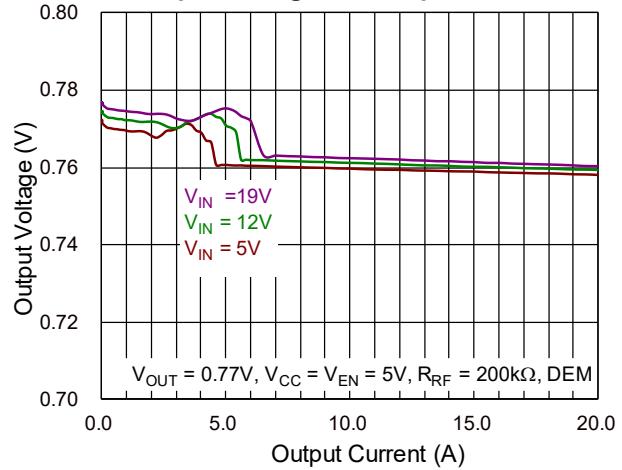

Note 7. Not production tested. Test condition is V_{IN} = 8V, V_{OUT} = 1.1V, I_{OUT} = 10A using application circuit.

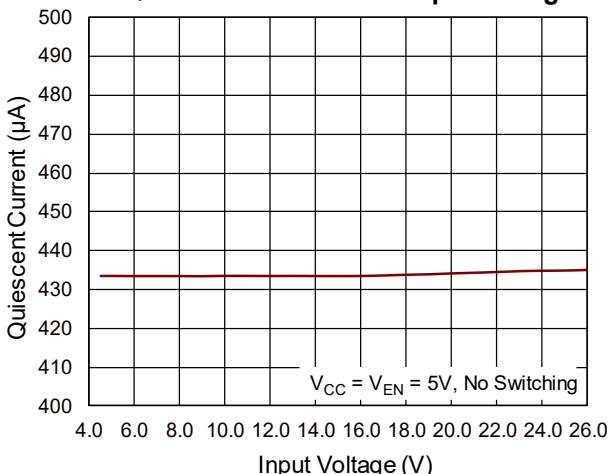
13 Typical Application Circuit

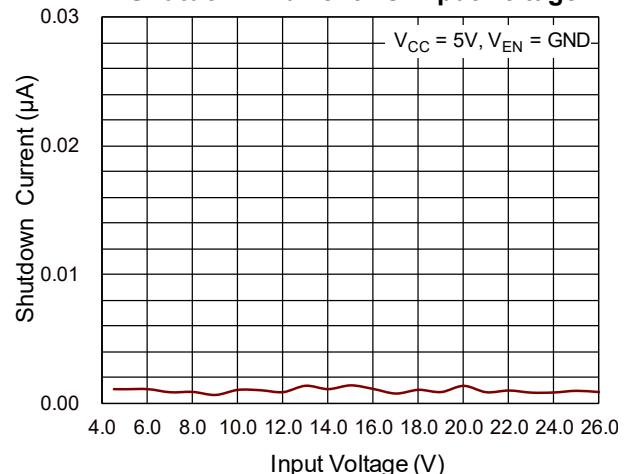


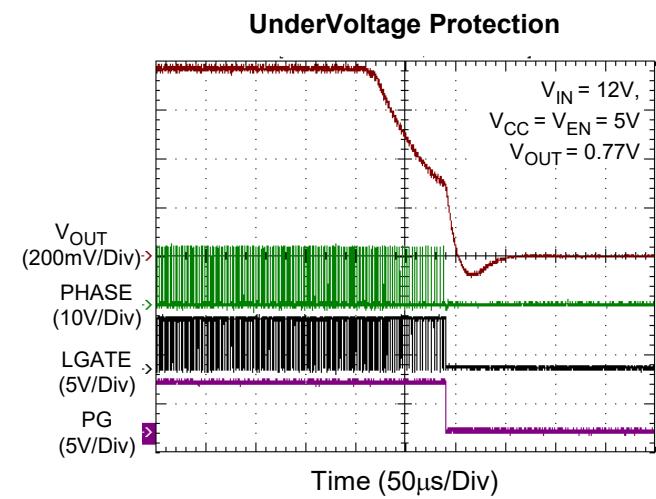
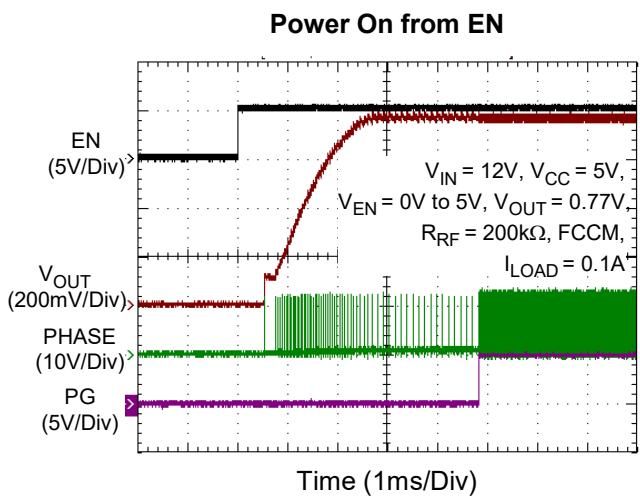
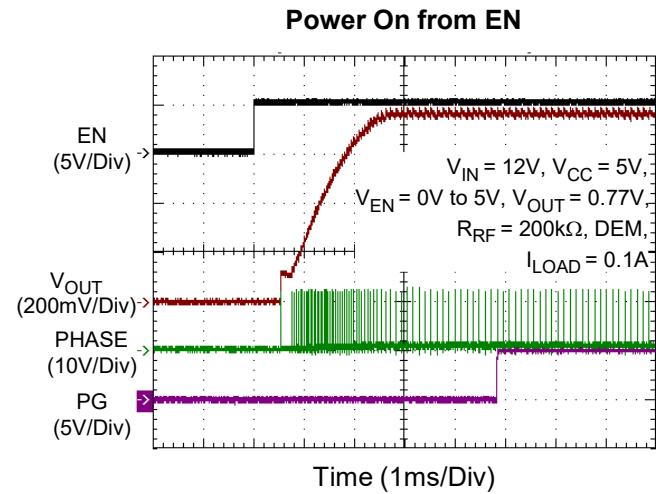
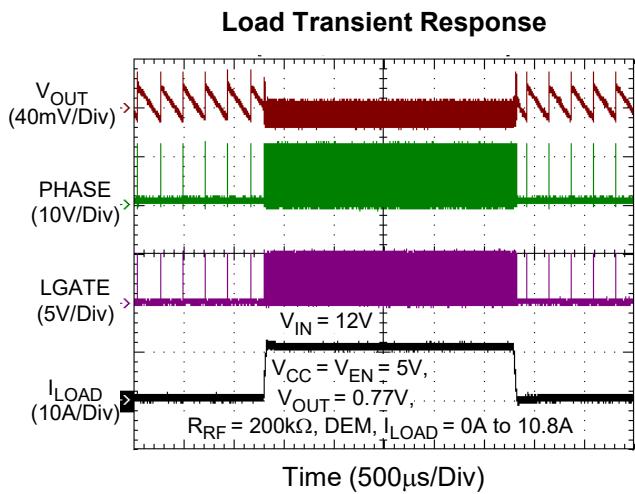
14 Typical Operating Characteristics


Efficiency vs. Output Current


Switching Frequency vs. Output Current


Switching Frequency vs. Input Voltage


Output Voltage vs. Output Current

Quiescent Current vs. Input Voltage

Shutdown Current vs. Input Voltage

15 Operation

The RT8237L integrates a Constant-On-Time (COT) PWM controller that provides the PWM signal based on the output ripple voltage, which is compared to the internal reference voltage.

The UGATE driver is turned on at the beginning of each cycle. After the internal one-shot timer expires, the UGATE driver will be turned off. The pulse width of this one-shot is determined by the converter's input voltage and the output voltage to keep the frequency fairly constant over the input voltage and output voltage range.

15.1 Power-On Reset, UVLO

Power-On Reset (POR) occurs when VCC rises above approximately 4.1V (typical), the RT8237L will reset the fault latch and prepare the PWM for operation. When the input voltage is below 3.7V (minimum), the Undervoltage-Lockout (UVLO) circuitry inhibits switching by keeping UGATE and LGATE low.

15.2 Soft-Start

The output voltage will track the internal ramp voltage during the soft-start interval to prevent large inrush current and output voltage overshoot while the converter is being powered up.

15.3 Mode Selection

The RT8237L supports mode selection through the RF by connecting a resistor from the RF pin to either GND or PG. When the resistor is connected to GND, the controller operates in diode emulation mode. When the resistor is connected to PG, the controller operates in CCM mode.

15.4 Current Limit Setting

The RT8237L has a cycle-by-cycle current limit control. The current limit circuit employs a unique "valley" current sensing algorithm. If the magnitude of the sensing signal at PHASE is above the current-limit threshold, the PWM is not allowed to initiate a new cycle.

15.5 Undervoltage Protection

The output voltage can be continuously monitored for undervoltage conditions. When the output voltage is less than 40% of its set voltage, undervoltage protection is triggered and then both UGATE and LGATE gate drivers are forced low.

16 Application Information

(Note 9)

The RT8237L PWM controller provides high efficiency, excellent transient response, and high DC output accuracy needed for stepping down high voltage batteries to generate low voltage CPU core, I/O, and chipset RAM supplies in notebook computers. Richtek Mach Response technology is specifically designed for providing 100ns “instant-on” response to load steps while maintaining a relatively constant operating frequency and inductor operating point over a wide range of input voltages. The topology solves the poor load transient response timing issues in fixed-frequency current-mode PWMs and avoids the problems caused by widely varying switching frequencies in conventional constant on-time and constant off-time PWM schemes.

16.1 On-Time Control (TON/MODE)

The on-time one-shot comparator has two inputs. One input monitors the output voltage from the PHASE pin, while the other input samples the input voltage and converts it to a current. This input voltage proportional current is used to charge an internal on-time capacitor. The on-time is the time required for the voltage on this capacitor to charge from zero volts to VOUT, thereby making the on-time of the high-side switch directly proportional to the output voltage and inversely proportional to the input voltage.

The on-time is given by:

$$t_{ON} = (V_{OUT}/V_{IN})/f_{SW}$$

Table 1. RF Connection and Switching Frequency

R _{RF} (kΩ)	Switching Frequency (kHz)
470kΩ	435
200kΩ	510
100kΩ	570
39kΩ	645

Note 8. For DEM, connect R_{RF} to GND; for CCM, connect R_{RF} to PG.

16.2 Enable and Disable

The EN pin enables power sequencing between the controller bias voltage and another voltage rail. The RT8237L remains in shutdown if the EN pin is lower than 500mV. When the EN pin rises above the V_{EN} trip point, the RT8237L will begin a new initialization and soft-start cycle.

16.3 POR, UVLO and Soft-Start

Power-on reset (POR) occurs when VCC rises above approximately 4.1V, in which the RT8237L resets the fault latch and prepares the PWM for operation. When the input voltage is below 3.7V (minimum), the VCC Undervoltage-Lockout (UVLO) circuitry inhibits switching by keeping UGATE and LGATE low. A built-in soft-start is used to prevent the power supply input from surge currents after PWM is enabled. A ramping up current-limit threshold is implemented the VOUT fold-back current during the soft-start duration.

16.4 Mode Selection (RF) Operation

To select the operation mode, connect a resistor from the RF pin to either GND or external power supply higher than 1.8V. When the resistor is connected to GND, the controller operates in diode emulation mode. When the resistor is connected to an external power supply higher than 1.8V, the controller operates in CCM mode.

16.5 Diode-Emulation Mode (RRF Connected to GND)

In diode-emulation mode, the RT8237L automatically reduces the switching frequency at light load conditions to maintain high efficiency. This reduction of frequency is achieved smoothly without increasing V_{OUT} ripple or load regulation. As the output current decreases from heavy load conditions, the inductor current is reduced and eventually comes to the point where its valley touches zero current, which is the boundary between continuous conduction and discontinuous conduction modes. To emulate the behavior of diodes, the low-side MOSFET allows only partial negative current to flow when the inductor freewheeling current reaches negative. As the load current is further decreased, it takes longer and longer to discharge the output capacitor to the level that requires the next “ON” cycle. The on-time is kept the same as that in heavy load conditions. On the contrary, when the output current increases from light load to heavy load, the switching frequency increases to the preset value as the inductor current reaches the continuous condition. This is shown in Figure 1. The transition load point to the light load operation is calculated as follows:

$$I_{LOAD} \approx \frac{(V_{IN} - V_{OUT})}{2L} \times t_{ON}$$

where t_{ON} is the on-time.

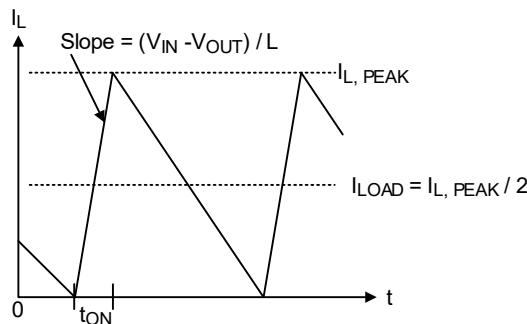


Figure 1. Boundary Condition of CCM/DCM

The switching waveforms may appear noisy and asynchronous when light loading causes diode-emulation operation, but this is a normal operating condition that results in high efficiency at light loads. Trade-offs in DEM noise vs. light load efficiency is made by varying the inductor value. The disadvantages for using higher inductor values include larger physical size and degraded load transient response (especially at low input voltage levels).

16.6 Forced-CCM Mode (FCCM)

The low noise, forced-CCM mode disables the zero-crossing comparator, which controls the low-side switch on-time. This causes the low-side gate drive waveform to become the complement of the high-side gate drive waveform. This in turn causes the inductor current to reverse at light loads as the PWM loop to maintain the duty ratio V_{OUT}/V_{IN} . A fairly constant switching frequency is the benefit of forced-CCM mode, but this comes at a cost. The no load battery current can be up to 10mA to 40mA, depending on the external MOSFETs.

16.7 Current Limit Setting (CS)

The RT8237L has a cycle-by-cycle current limit control. The current limit circuit employs a unique “valley” current sensing algorithm. If the magnitude of the current sense signal at PHASE is above the current-limit threshold, the PWM is not allowed to initiate a new cycle (see [Figure 2](#)). In order to provide both good accuracy and a cost effective solution, the RT8237L supports temperature compensated MOSFET $R_{DS(ON)}$ sensing.

The CS pin of the RT8237L is a multiplexed pin for PWM enable/disable control and current-limit threshold setting. Connect a setting resistor from this pin to GND via an N-MOSFET. When the N-MOSFET is turned off, the PWM

is disabled. When the N-MOSFET is turned on, the PWM is enabled and the current-limit threshold is equal to 1/8 of the voltage at this pin.

Choose a current limit resistor by using the equation below:

$$R_{OC_SET} = \frac{V_{CS_OC}}{I_{CS}} = \frac{\left(I_{LOAD_OC} - \frac{I_{RIPPLE}}{2} \right) \times 8 \times R_{DS(ON)}}{I_{CS}}$$

Inductor current is monitored by the voltage between the GND and PHASE pins, so the PHASE pin should be connected to the Drain terminal of the low-side MOSFET. I_{CS} has a temperature coefficient to compensate the temperature dependency of the $R_{DS(ON)}$. GND is used as the positive current sensing node, so GND should be connected to the Source terminal of the low-side MOSFET.

As the comparison is being done during the OFF state, V_{LIMIT} (current-limit threshold) sets the valley level of the inductor current. Thus, the load current at overcurrent threshold, I_{LOAD_OC} , can be calculated as follows:

$$\begin{aligned} I_{LOAD_OC} &= \frac{V_{CS_OC}}{8 \times R_{DS(ON)}} + \frac{I_{RIPPLE}}{2} \\ &= \frac{V_{CS_OC}}{8 \times R_{DS(ON)}} + \frac{1}{2 \times L \times f} \times \frac{(V_{IN} - V_{OUT}) \times V_{OUT}}{V_{IN}} \end{aligned}$$

In an overcurrent condition, the current to the load exceeds the current to the output capacitor. Thus, the output voltage falls and eventually crosses the undervoltage protection threshold, inducing IC shutdown.

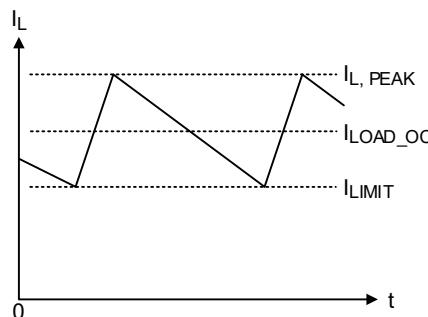


Figure 2. "Valley" Current Limit

When the device operates in the FCCM, the negative current limit protects the external component. The negative current limit detect threshold is set as the same value as positive current limit but negative polarity. The threshold still is the valley value of the inductor current.

16.8 MOSFET Gate Driver

The high-side driver is designed to drive high current, low $R_{DS(ON)}$ N-MOSFET(s). When configured as a floating driver, 5V bias voltage is delivered from the VCC supply. The average drive current is proportional to the gate charge at $V_{GS} = 5V$ times switching frequency. The instantaneous drive current is supplied by the flying capacitor between the BOOT and PHASE pins, and it is recommended to connect with $R_{BOOT} = 0\Omega$ and $C_{BOOT} = 0.1\mu F$. To prevent shoot through, a dead-time is internally generated between the high-side MOSFET off to the low-side MOSFET on, and the low-side MOSFET off to the high-side MOSFET on. The low-side driver is designed to drive high current low $R_{DS(ON)}$ N-MOSFET(s). The internal pull-down transistor that drives LGATE low is robust, with a 0.5Ω typical on-resistance. A 5V bias voltage is delivered from the VCC supply. The instantaneous drive current is supplied by the flying capacitor between VCC and GND.

For high current applications, certain combinations of high-side and low-side MOSFETs may cause excessive

gate-drain coupling, which can lead to efficiency-killing, EMI-producing shoot-through currents. This is often remedied by adding a resistor in series with BOOT, which increases the turn-on time of the high-side MOSFET without degrading the turn-off time (see [Figure 3](#)).

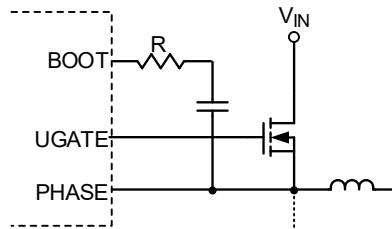


Figure 3. Reducing the UGATE Rise Time

16.9 Power-Good Output (PG)

The power-good output is an open-drain output and requires a pull-up resistor. PG will be pulled low when the output voltage drops below 40% of the set voltage, or trigger OTP or VCC UVLO.

It is held low until reset by EN or power recycle VCC.

During soft-start, PG is actively held low and is allowed to transition high only after blanking time is over (typically 3.7ms) and the output reaches 40% of its set voltage. There is a 2.5 μ s delay built into the PG circuitry to prevent false transitions.

16.10 Output Undervoltage Protection (UVP)

The output voltage can be continuously monitored for undervoltage conditions. When the output voltage is less than 40% of its set voltage threshold, undervoltage protection will be triggered and then both UGATE and LGATE gate drivers are forced low and enter Latch-Off Mode. In Latch-Off Mode, the RT8237L can be reset by EN or power recycle VCC. There is a 2.5 μ s delay built into the undervoltage protection circuit to prevent false transitions. During soft-start, the UVP blanking time is 3.7ms.

16.11 Over-Temperature Protection (OTP)

The device implements an internal thermal shutdown to protect itself if the junction temperature exceeds 150°C. When the junction temperature exceeds the thermal shutdown threshold that the OTP function will be triggered and the RT8237L will shut down and enter Latch-Off Mode.

16.12 Output Voltage Setting (FB)

The output voltage can be adjusted from 0.7V to 3.3V by setting the feedback resistors, R1 and R2 (see [Figure 4](#)). Choose R2 to be approximately 10k Ω and solve for R1 using the equation below:

$$V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2} \right)$$

where VREF is 0.704V (typical).

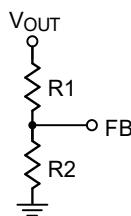


Figure 4. Setting VOUT with a Resistive Voltage Divider

16.13 Inductor Selection

The inductor plays an important role in buck converters because it stores the energy from the input power rail and then releases the energy to the load. From the viewpoint of efficiency, the dc resistance (DCR) of the inductor should be as small as possible to minimize the conduction loss. In addition, because the inductor takes up a significant portion of the board space, its size is also important. Low profile inductors can save board space especially when there is a height limitation. However, low DCR and low profile inductors are usually cost ineffective. Additionally, larger inductance results in lower ripple current, which means lower power loss. The inductor current rising time increases with inductance value. This means the transient response will be slower. Therefore, the inductor design is a compromise between performance, size, and cost.

In general, the inductance is designed such that the ripple current ranges between 20% to 40% of the full load current. The inductance can be calculated using the following equation:

$$L_{MIN} = \frac{V_{IN} - V_{OUT}}{f_{SW} \times k \times I_{OUT_rated}} \times \frac{V_{OUT}}{V_{IN}}$$

where k is the ratio between inductor ripple current and rated output current.

16.14 Input Capacitor Selection

Voltage rating and current rating are the key parameters in selecting an input capacitor. For a conservatively safe design, an input capacitor should generally have a voltage rating 1.5 times greater than the maximum input voltage.

The input capacitor is used to supply the input RMS current, which is approximately calculated using the following equation:

$$I_{RMS} = I_{OUT} \times \sqrt{\frac{V_{OUT}}{V_{IN}} \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)}$$

The next step is to select a proper capacitor for RMS current rating. Placing more than one capacitor with low Equivalent Series Resistance (ESR) in parallel to form a capacitor bank is a good design. Also, placing a ceramic capacitor close to the Drain of the high-side MOSFET is helpful in reducing the input voltage ripple at heavy load.

16.15 Output Capacitor Selection

The output capacitor and the inductor form a low-pass filter in the buck topology. In steady-state condition, the ripple current that flows into or out of the capacitor results in ripple voltage. The output voltage ripples contain two components, ΔV_{OUT_ESR} and ΔV_{OUT_C} .

$$\Delta V_{OUT_ESR} = \Delta I_L \times ESR$$

$$\Delta V_{OUT_C} = \Delta I_L \times \frac{1}{8 \times C_{OUT} \times f_{SW}}$$

When load transient occurs, the output capacitor supplies the load current before the controller can respond. Therefore, the ESR will dominate the output voltage sag during load transient. The output voltage sag can be calculated using the following equation:

$$V_{OUT_sag} = ESR \times \Delta I_{OUT}$$

For a given output voltage sag specification, the ESR value can be determined.

Another parameter that has influence on the output voltage sag is the equivalent series inductance (ESL). A rapid change in load current results in di/dt during transient. Therefore, ESL contributes to part of the voltage sag. Use a capacitor that has low ESL to obtain better transient performance. Generally, using several capacitors in parallel will have better transient performance than using a single capacitor for the same total ESR.

Unlike the electrolytic capacitor, the ceramic capacitor has a relatively low ESR and can reduce the voltage deviation during a load transient. However, the ceramic capacitor can only provide low capacitance value. Therefore, use a mixed combination of an electrolytic capacitor and a ceramic capacitor for better transient performance.

16.16 MOSFET Selection

The majority of power loss in the buck power conversion comes from the loss in the power MOSFETs. For low-voltage high-current applications, the duty cycle of the high-side MOSFET is small. Therefore, the switching loss of the high-side MOSFET is a concern. Power MOSFETs with lower total gate charge are preferred in such applications.

However, the small duty cycle means the low-side MOSFET is on for most of the switching cycle. Therefore, the conduction loss tends to dominate the total power loss of the converter. To improve overall efficiency, MOSFETs with low $R_{DS(ON)}$ are preferred in circuit design. In some cases, multiple MOSFETs are connected in parallel to further decrease the on-state resistance. However, this depends on the low-side MOSFET driver capability and the budget. For the high-side MOSFET selection, when $R_{BOOT} = 0\Omega$, it is strongly recommended that the C_{iss} of the MOSFET should not exceed 3000pF. If $R_{BOOT} = 2.2\Omega$, it is strongly recommended that the C_{iss} of the MOSFET should not exceed 1500pF.

16.17 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

$$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a VQFN-16L 3x3 package, the thermal resistance, θ_{JA} , is 30°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at $T_A = 25^\circ\text{C}$ can be calculated as below:

$$P_{D(MAX)} = (125^\circ\text{C} - 25^\circ\text{C}) / (30^\circ\text{C/W}) = 3.33\text{W for a VQFN-16L 3x3 package.}$$

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curve in Figure 5 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

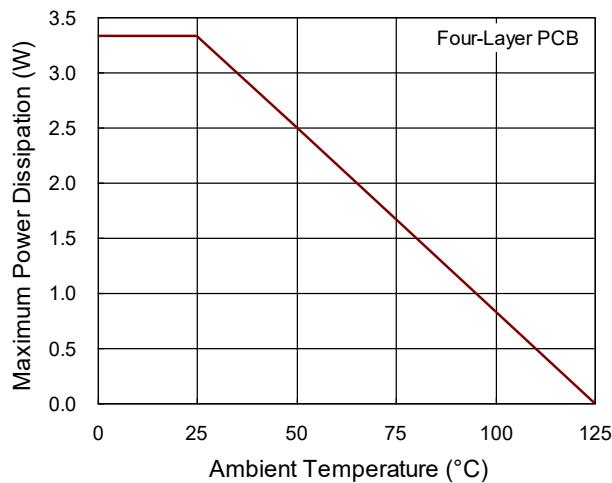
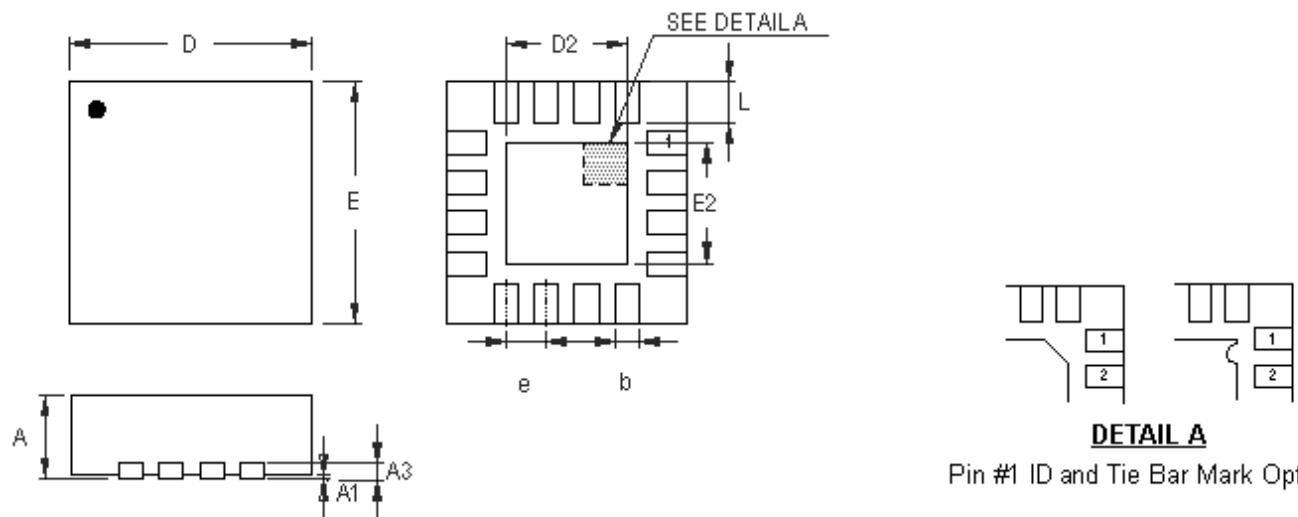


Figure 5. Derating Curve of Maximum Power Dissipation

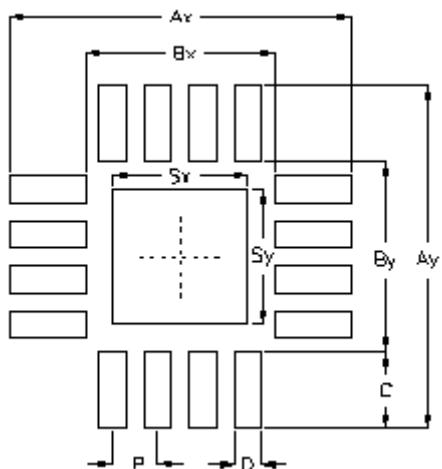
16.18 Layout Considerations


PCB Layout is very important in high-frequency switching converter design. If designed improperly, the PCB may radiate excessive noise and contribute to converter instability. The following must be considered before starting a layout for the RT8237L.

- Connect an RC low pass filter for VCC; $1\mu\text{F}$ and 10Ω are recommended. Place the filter capacitor close to the IC.
- Keep current limit setting network as close to the IC as possible. Routing of the network should avoid coupling to high-voltage switching node.
- Connections from the drivers to the respective gate of the high-side or the low-side MOSFET should be as short as possible to reduce stray inductance.
- All sensitive analog traces and components such as FB, GND, EN, CS, PG, VCC, and RF should be placed away from high-voltage switching nodes such as PHASE, LGATE, UGATE, or BOOT nodes to avoid coupling. Use internal layer(s) as ground plane(s) and shield the feedback traces from power traces and components.
- Current sense connections must always be made using Kelvin connections to ensure an accurate signal, with the current limit resistor located at the device.

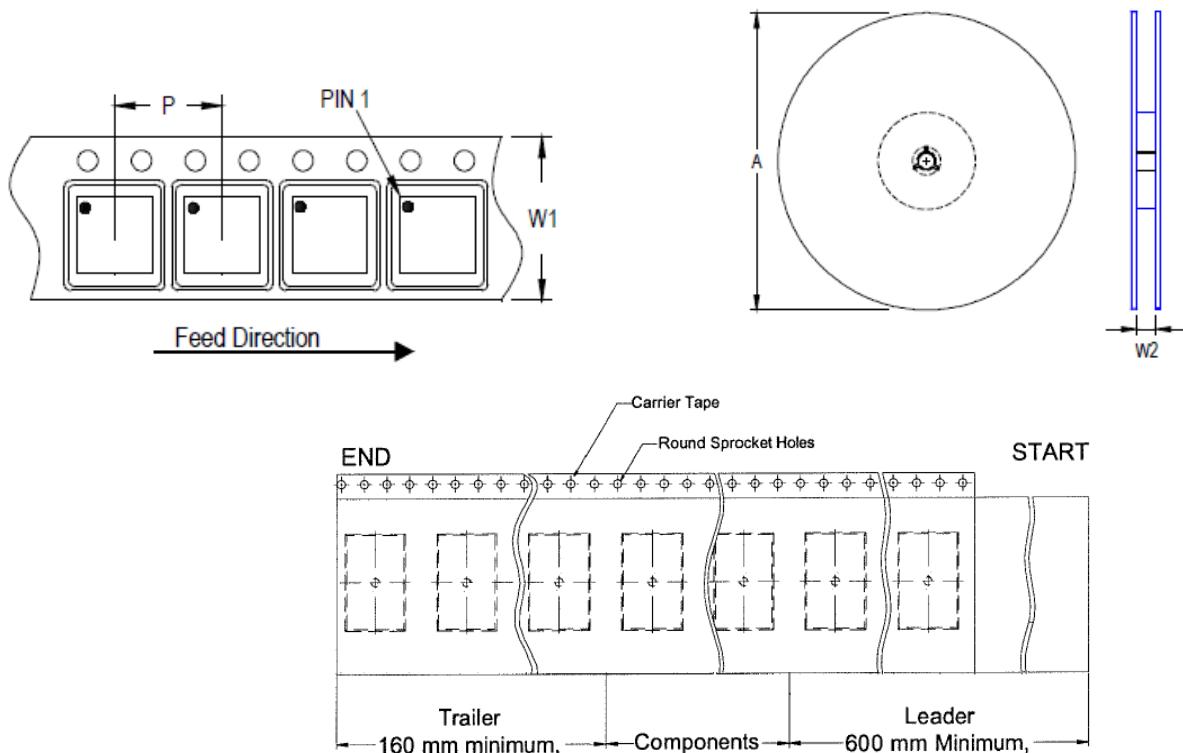
Power sections should connect directly to ground plane(s) using multiple vias as required for current handling (including the chip power ground connections). Power components should be placed close to the IC to minimize loops and reduce losses.

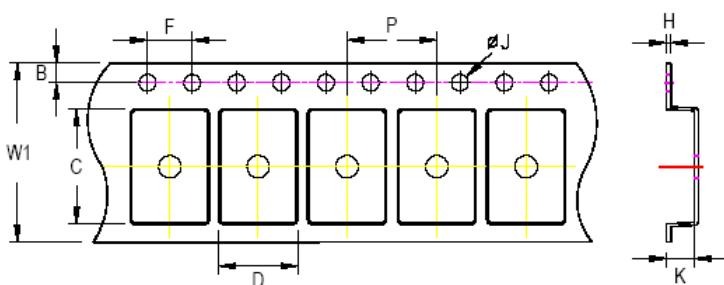
Note 9. The information provided in this section is for reference only. The customer is solely responsible for designing, validating, and testing any applications incorporating Richtek's product(s). The customer is also responsible for applicable standards and any safety, security, or other requirements.


17 Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.800	1.000	0.031	0.039
A1	0.000	0.050	0.000	0.002
A3	0.175	0.250	0.007	0.010
b	0.180	0.300	0.007	0.012
D	2.950	3.050	0.116	0.120
D2	1.300	1.750	0.051	0.069
E	2.950	3.050	0.116	0.120
E2	1.300	1.750	0.051	0.069
e	0.500		0.020	
L	0.350	0.450	0.014	0.018

V-Type 16L QFN 3x3 Package


18 Footprint Information


Package	Number of Pin	Footprint Dimension (mm)									Tolerance
V/W/U/XQFN3*3-16	16	P	Ax	Ay	Bx	By	C	D	Sx	Sy	± 0.05
		0.50	3.80	3.80	2.10	2.10	0.85	0.30	1.50	1.50	

19 Packing Information

19.1 Tape and Reel Data

Package Type	Tape Size (W1) (mm)	Pocket Pitch (P) (mm)	Reel Size (A)		Units per Reel	Trailer (mm)	Leader (mm)	Reel Width (W2) Min/Max (mm)
			(mm)	(in)				
(V, W) QFN/DFN 3x3	12	8	180	7	1,500	160	600	12.4/14.4

C, D, and K are determined by component size.
The clearance between the components and the cavity is as follows:
- For 12mm carrier tape: 0.5mm maximum

Tape Size	W1			P		B		F		ØJ		K		H
	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	1.0mm	1.3mm	0.6mm		

19.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1		4	
2		5	
3		6	

Container Package	Reel		Box			Carton		
	Size	Units	Item	Reels	Units	Item	Boxes	Unit
(V, W) QFN & DFN 3x3	7"	1,500	Box A	3	4,500	Carton A	12	54,000
			Box E	1	1,500	For Combined or Partial Reel.		

19.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10^4 to 10^{11}					

Richtek Technology Corporation

14F, No. 8, Taiyuan 1st St., Zhubei City,
Hsinchu County 302082, Taiwan (R.O.C.)
Tel: 886-3-5526-789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2026 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

20 Datasheet Revision History

Version	Date	Description
00	2023/10/31	Final
01	2023/11/23	Functional Pin Description on P3
02	2026/1/13	Changed the names PGOOD to PG Functional Pin Description Functional Block Diagram Application Information Packing Information - Added Tape Size "K"