

RT7272A

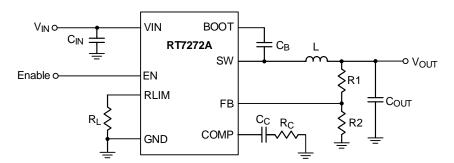
3A, 36V, 500kHz Synchronous Step-Down Converter

1 General Description

The RT7272A is a high efficiency, current mode synchronous step-down DC-DC converter that can deliver up to 3A output current over a wide input voltage range from 4.5V to 36V. The RT7272A integrates a 150m Ω On-Resistance of high-side MOSFET and an 80m Ω On-Resistance of low-side MOSFET to achieve high conversion efficiency up to 95%. The current mode control architecture supports fast transient response and simple compensation circuit.

A cycle-by-cycle current limit function provides protection against shorted output and an internal soft-start eliminates input current surge during start-up. The RT7272A provides complete protection functions such as input under-voltage lockout, output under-voltage protection, over-current protection and over-temperature protection.

The RT7272A is available in the thermal enhanced SOP-8 (Exposed Pad) package.


2 Features

- 4.5V to 36V Input Voltage Range
- 3A Output Current
- Internal N-MOSFETs
- Current Mode Control
- Fixed Switching Frequency Operation: 500kHz
- Adjustable Output Voltage from 0.8V to 30V
- High Efficiency Up to 95%
- Stable with Low ESR Ceramic Output Capacitors
- Cycle-by-Cycle Current Limit
- Input Undervoltage Lockout
- Output Undervoltage Protection
- Over-Temperature Protection
- Adjustable Current Limit

3 Applications

- Distributed Power Systems
- Pre-Regulator for Linear Regulators
- Notebook Computers
- Point of Load Regulator in Distributed Power System
- Digital Set-Top Boxes
- · Personal Digital Recorders
- Broadband Communications
- Flat Panel TVs and Monitors
- Vehicle Electronics

4 Simplified Application Circuit

DS7272A-10 May 2024

5 Ordering Information

RT7272A □ □ Package Type⁽¹⁾ SP: SOP-8 (Exposed Pad-Option 2) Lead Plating System G: Richtek Green Policy Compliant (2)

Note 1.

- Marked with (1) indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.
- Marked with (2) indicated: Richtek products are Richtek Green Policy compliant.

6 Marking Information

RT7272A **GSPYMDNN** RT7272AGSP: Product Code YMDNN: Date Code

DS7272A-10 May 2024

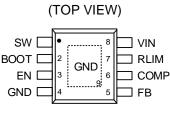
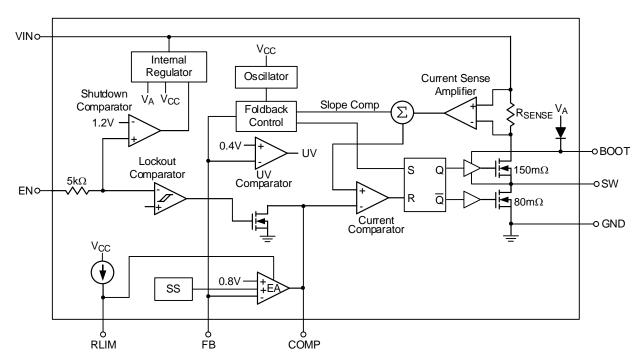


Table of Contents

1	Gener	al Description1		17.5	Current Setting	11
2	Featur	es1		17.6	Undervoltage (UV) Comparator	11
3	Applic	ations1		17.7	Over-Temperature Protection	11
4	Simpli	fied Application Circuit1	18	Applic	cation Information	12
5	Orderi	ng Information2		18.1	Output Voltage Setting	12
6	Markir	ng Information2		18.2	External Bootstrap Diode	12
7	Pin Co	onfiguration4		18.3	Chip Enable Operation	12
8	Functi	onal Pin Description4		18.4	Undervoltage Protection	13
9	Functi	onal Block Diagram5		18.5	Over-Temperature Protection	13
10	Absolu	ute Maximum Ratings6		18.6	Inductor Selection	13
11	ESD R	atings 6		18.7	Input Capacitor and Output Capacitor	
12	Recon	nmended Operating Conditions6			Selection	14
13	Therm	al Information6		18.8	Thermal Considerations	15
14	Electri	cal Characteristics7		18.9	Layout Considerations	16
15	Typica	l Application Circuit8	19	Outlin	e Dimension	18
16	Typica	l Operating Characteristics9	20	Footp	rint Information	19
17	Opera	tion 11	21	Packii	ng Information	20
	17.1	Error Amplifier 11		21.1	Tape and Reel Data	20
	17.2	Oscillator11		21.2	Tape and Reel Packing	21
	17.3	Internal Regulator11		21.3	Packing Material Anti-ESD Property	22
	17 <i>/</i>	Soft-Start (SS)	22	Datas	heat Revision History	23

7 Pin Configuration


SOP-8(Exposed Pad)

8 Functional Pin Description

Pin No.	Pin Name	Pin Function
1	SW	Switch node. Connect to external L-C filter.
2	воот	Bootstrap supply for high-side gate drive. A 100nF or greater capacitor is recommended to connect from BOOT pin to SW pin.
3	EN	Enable control input. A logic-high enables the converter; a logic-low forces the device into shutdown mode.
4, 9 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum thermal dissipation.
5	FB	Feedback input pin. The FB pin is connected to the converter output. It is used to set the output of the converter to regulate to the specific output voltage via a resistive divider.
6	COMP	Compensation node. The COMP pin is used to compensate the regulation control loop. Connect a series RC network from COMP to GND.
7	RLIM	Current limit setting. Connect a resistor from the RLIM pin to ground to set the current limit.
8	VIN	Power input. The input voltage range is from 4.5V to 36V. Must bypass with a suitable large ceramic capacitor.

9 Functional Block Diagram

10 Absolute Maximum Ratings

(Note 2)

- Supply Input Voltage, VIN ----- -0.3V to 40V Switch Voltage, SW ------ -0.3V to 40.3V SW (t < 10ns) ------ -5V to 46V • Other Pins Voltage ----- -0.3V to 40V • Lead Temperature (Soldering, 10 sec.) ------ 260°C • Junction Temperature ------ 150°C
- Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

11 ESD Ratings

(Note 3)

 ESD Susceptibility HBM (Human Body Model)----- 2kV

Note 3. Devices are ESD sensitive. Handling precautions are recommended.

12 Recommended Operating Conditions

(Note 4)

- Supply Input Voltage, VIN ------ 4.5V to 36V
- Ambient Temperature Range ----- --- -- 40°C to 85°C

Note 4. The device is not guaranteed to function outside its operating conditions.

13 Thermal Information

(Note 5 and Note 6)

	Thermal Parameter	WET-WQFN-52L 6x6 (FC)	Unit
θJA	Junction-to-ambient thermal resistance (JEDEC standard)	39	°C/W
θJC(Top)	Junction-to-case (top) thermal resistance	61.5	°C/W
θ JC(Bottom)	Junction-to-case (bottom) thermal resistance	2.94	°C/W
θJA(EVB)	Junction-to-ambient thermal resistance (specific EVB) (Note 5)	37.97	°C/W
ΨJC(Top)	Junction-to-top characterization parameter (Note 6)	8.78	°C/W
ΨЈВ	Junction-to-board characterization parameter (Note 6)	21.94	°C/W

Note 5. For more information about thermal parameter, see the Application and Definition of Thermal Resistances report,

Note 6. θJA(EVB), ΨJC(TOP), and ΨJB are measured on a high effective-thermal-conductivity four-layer test board which is in size of 67mm x 47mm; furthermore, all layers with 1 oz. Cu. Thermal resistance/parameter values may vary depending on the PCB material, layout, and test environmental conditions.

14 Electrical Characteristics

(V_{IN} = 12V, C_{IN} = 20 μ F, T_A = 25°C, unless otherwise specified.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Shutdown Current	ISHDN	VEN = 0V		0.5	3	μΑ
Quiescent Current	IQ	VEN = 3V, VFB = 0.9V		0.9	1.2	mA
Reference Voltage	V_{REF}	$4.5V \le V_{IN} \le 36V$	0.788	8.0	0.812	V
On-Resistance of High-Side MOSFET	RDSON_H			150		mΩ
On-Resistance of Low-Side MOSFET	RDSON_L			80		mΩ
High Side Switch Leakage Current		VEN = 0V, VSW = 0V		0	10	μА
High-Side Switch (Peak) Current Limit Range	Ішм_н		1.9		7	Α
High-Side Switch (Peak)		Minimum duty cycle, $R_{LIM} = 57.6k\Omega$	1.9	2.5	3.1	
Current Limit	ILIM_H	Minimum duty cycle, $R_{LIM} = 84.5 k\Omega$	2.7	3.5	4.2	Α
(<u>Note 7</u>)		Minimum duty cycle, $R_{LIM} = 137 k\Omega$	4.8	5.5	6.3	
Low-Side Switch (Valley) Current Limit	I _{LIM_L}	From drain to source		1.5		А
Oscillator Frequency	fosc		450	500	550	kHz
Short Circuit Oscillation Frequency	fosc_sc	VFB = 0V		75		kHz
Maximum Duty Cycle	Dмах	VFB = 0.7V		90		%
Minimum On-Time	ton_min			100		ns
EN Input Voltage Logic- High	VEN_H		1.4	1.65	2	V
EN Input Voltage Logic-Low	VEN_L		1.2	1.45	1.9	V
EN Input Voltage Hysteresis	VEN_HYS			0.2		V
Undervoltage Lockout Rising Threshold	Vuvlo_r	VIN rising	3.9	4.1	4.3	V
Undervoltage Lockout Hysteresis	Vuvlo_HYS			250		mV
Over-Temperature Protection Threshold	Тотр			150		°C
Over-Temperature Protection Hysteresis	Totp_hys			20		°C
COMP to Current Sense Transconductance	gcs	$\Delta I_{COMP} = \pm 10 \mu A$		4.7		A/V
Error Amplifier Transconductance	gm			1000		μΑ/V
Load Regulation	VLOAD_REG				0.05	%/A
Line Regulation	VLINE_REG	V _{IN} = 4.5V to 36V			0.1	%

Note 7. R_{LIM} (k Ω) = [I_{LIM_H} x 24.14 x (1 + 0.024 x (I_{LIM_H} - 3.5)) - 1.3], where U_{OC} is desired upper switch peak current limit value.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

DS7272A-10 May 2024 www.richtek.com

15 Typical Application Circuit

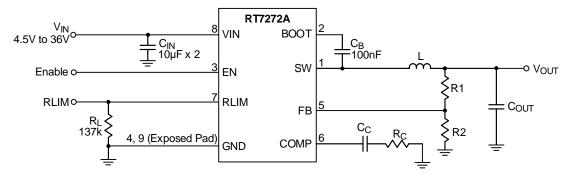
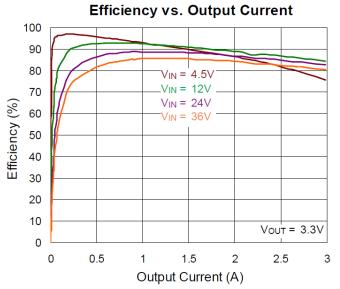
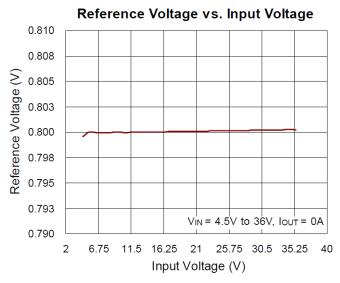
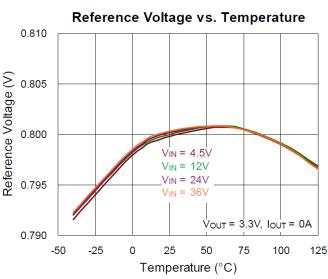


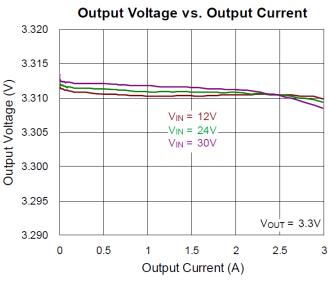
Figure 1. The Typical Application Circuit of the RT7272A

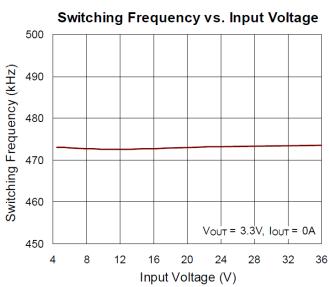
Table 1. Suggested Component Values (Note 8)

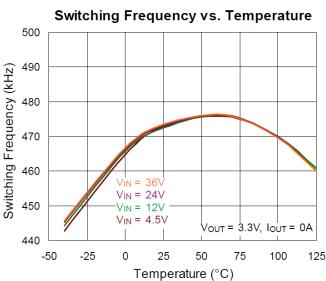

V _{OUT} (V)	R1 (k Ω)	R2 (k Ω)	R _C (k Ω)	L (μH)	C _C (nF)	C _{OUT} (μF)
12	47	3.35	47	10	2.7	22 x 2
8	27	3	36	8.2	2.7	22 x 2
5	62	11.8	24	6.8	2.7	22 x 2
3.3	75	24	16	4.7	2.7	22 x 2
2.5	25.5	12	12	3.6	2.7	22 x 2
1.2	30	60	6.8	2.2	2.7	22 x 2

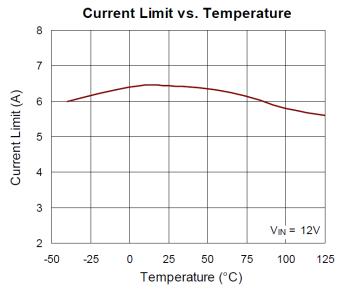

Note 8. All input and output capacitors are the suggested values, referring to the effective capacitances, which may be subject to any de-rating effect, like a DC bias.

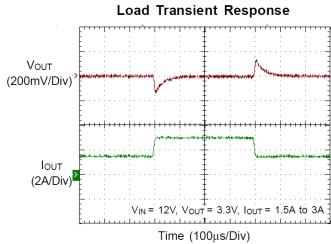

DS7272A-10 May 2024

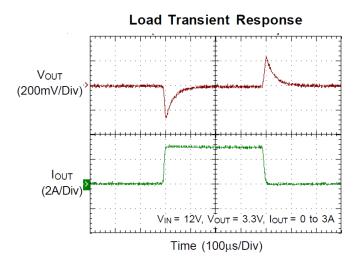


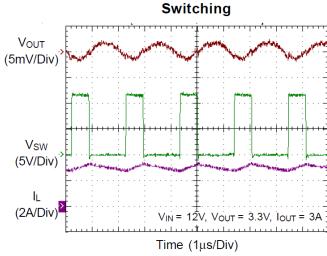

16 Typical Operating Characteristics

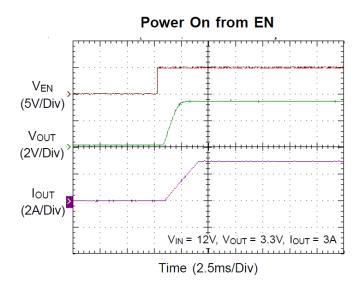


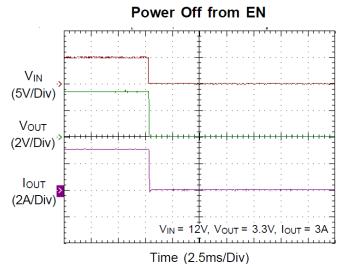



Copyright © 2024 Richtek Technology Corporation. All rights reserved.


RICHTEK


is a registered trademark of Richtek Technology Corporation.





17 Operation

The RT7272A is a constant frequency, current mode synchronous step-down converter. In normal operation, the high-side N-MOSFET is turned on when the S-R latch is set by the oscillator and turned off when the current comparator resets the S-R latch. While the high-side N-MOSFET is turned off, the low-side N-MOSFET is turned on to conduct the inductor current until next cycle begins.

17.1 **Error Amplifier**

The error amplifier adjusts its output voltage by comparing the feedback signal (FB pin voltage, VFB) with the internal 0.8V reference. When the load current increases, it causes a drop in the feedback voltage relative to the reference. The error amplifier's output voltage then rises to allow higher inductor current to match the load current.

17.2 Oscillator

The internal oscillator runs at fixed frequency 500kHz. In short circuit condition, the frequency is reduced to 75kHz for low power consumption.

Internal Regulator

The regulator provides low voltage power to supply the internal control circuits and the bootstrap power for high side gate driver.

17.4 Soft-Start (SS)

An internal current source charges an internal capacitor to build a soft-start ramp voltage. The FB pin voltage will track the internal ramp voltage during soft-start interval. The typical soft-start time is 2ms.

Current Setting

The current limit of high-side MOSFET is adjustable by an external resistor connected to the RLIM pin. The current limit range is from 1.9A to 7A. When the inductor current reaches the current limit threshold, the COMP pin voltage will be clamped to limit the inductor current.

Undervoltage (UV) Comparator

If the feedback voltage (VFB) is lower than 0.4V, the UV Comparator will go high to turn off the high-side MOSFET. The output undervoltage protection is designed to operate in hiccup mode. When the UV condition is removed, the converter will resume switching.

Over-Temperature Protection

The over-temperature protection will shut down the switching operation when the junction temperature exceeds 150°C. Once the junction temperature cools down by approximately 20°C, the converter will automatically resume switching.

18 Application Information

(Note 9)

18.1 **Output Voltage Setting**

The resistive divider allows the FB pin to sense the output voltage as shown in Figure 2.

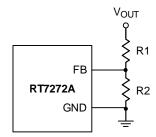


Figure 2. Output Voltage Setting

The output voltage is set by an external resistive voltage divider according to the following equation:

$$V_{OUT} = V_{REF} \left(1 + \frac{R1}{R2} \right)$$

Where VREF is the internal reference voltage (typical 0.8V).

External Bootstrap Diode

Connect a 100nF low ESR ceramic capacitor between the BOOT pin and SW pin as shown in Figure 3. This capacitor provides the gate driver voltage for the high side MOSFET. It is recommended to add an external bootstrap diode between an external 5V and BOOT pin to improve efficiency when input voltage is lower than 5.5V or duty ratio is higher than 65%. Select the bootstrap diode with fast switching features, such as the IN4148 or BAT54. The external 5V can be a 5V fixed input from system or a 5V output of the RT7272A. Note that the external boot voltage must be lower than 5.5V

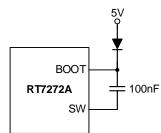


Figure 3. External Bootstrap Diode

18.3 **Chip Enable Operation**

The EN pin is used for the RT7272A enable control. Pull the EN pin voltage (VEN) to logic-low voltage (VEN_L) the RT7272A shuts down and enters to low quiescent current state about 3µA. The RT7272A starts switching again once pull the VEN to logic-high voltage (VEN H). For external timing control, the EN pin can also be externally pulled high by adding a REN resistor and CEN capacitor from the VIN pin (see Figure 4).

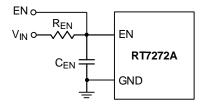


Figure 4. Enable Timing Control

An external MOSFET can be added to implement digital control on the EN pin when no system voltage above 2.5V is available, as shown in Figure 5. In this case, a $100k\Omega$ pull-up resistor, Ren, is connected between Vin and the EN pin. MOSFET Q1 will be under logic control to pull down the EN pin.

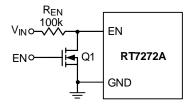


Figure 5. Digital Enable Control Circuit

18.4 **Undervoltage Protection**

The RT7272A provides Undervoltage Protection (UVP) with hiccup mode. When the VFB voltage drops below 0.4V, the UVP function will be triggered to shut down switching operation. If the UVP condition remains for a period, the RT7272A will restart automatically and the UVP is disabled during soft-start period as shown in Figure 6. When the UVP condition is removed, the converter will return to operate normally.

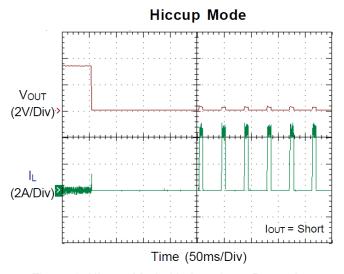


Figure 6. Hiccup Mode Undervoltage Protection

18.5 **Over-Temperature Protection**

The RT7272A features an Over-Temperature Protection (OTP) to prevent the device from overheating due to excessive power dissipation. The OTP will shut down the switching operation when junction temperature exceeds 150°C. Once the junction temperature cools down by approximately 20°C, the converter will resume operation. To maintain continuous operation, the maximum junction temperature should be lower than 125°C.

Note that the over-temperature protection is intended to protect the device during momentary overload conditions. The protection is activated outside of the absolute maximum range of the operation as a secondary fail-safe and therefore should not be relied upon operationally. Continuous operation above the specified absolute maximum operating junction temperature may impair device reliability or permanently damage the device.

18.6 **Inductor Selection**

The inductor value and operating frequency determine the ripple current according to a specific input and output voltage. The ripple current ΔIL increases with higher VIN and decreases with higher inductance.

$$\Delta I_L = \left(\frac{V_{OUT}}{f \times L}\right) \times \left(1 - \frac{V_{OUT}}{V_{IN}}\right)$$

RICHTEK is a registered trademark of Richtek Technology Corporation.

Having a lower ripple current reduces not only the ESR losses in the output capacitors but also the output voltage ripple. High frequency with small ripple current can achieve the highest efficiency operation. However, it requires a large inductor to achieve this goal.

For the ripple current selection, the value of $\Delta I_L = 0.24(I_{MAX})$ will be a reasonable starting point. The largest ripple current occurs at the highest Vin. To guarantee that the ripple current stays below the specified maximum, the inductor value should be chosen according to the following equation:

$$L = \left(\frac{V_{OUT}}{f \times 0.24 \times I_{(MAX)}}\right) \times \left(1 - \frac{V_{OUT}}{V_{IN(MAX)}}\right)$$

The inductor's current rating (caused a 40°C temperature rising from 25°C ambient temperature) should be greater than the maximum load current and its saturation current should be greater than the short circuit peak current limit. Please see Table 2 for the inductor selection reference.

rabio z . Gaggootoa i	rabio 2: Gaggootea maadtero for Typicar Application Ground										
Component Supplier	Series	Dimensions(mm)									
TDK	VLF10045	10 x 9.7 x 4.5									
TDK	SLF12565	12.5 x 12.5 x 6.5									
TAIYO YUDEN	NR8040	8 x 8 x 4									

Table 2. Suggested Inductors for Typical Application Circuit

Input Capacitor and Output Capacitor Selection

The input capacitance, CIN, is needed to filter the trapezoidal current at the Source of the high side MOSFET. To prevent large ripple current, a low ESR input capacitor sized for the maximum RMS current should be used. The approximate RMS current equation is given:

$$I_{RMS} = I_{OUT(MAX)} \frac{V_{OUT}}{V_{IN}} \sqrt{\frac{V_{IN}}{V_{OUT}} - 1}$$

This formula has a maximum at V_{IN} = 2xV_{OUT}, where I_{RMS} = I_{OUT} / 2. The worst case condition is commonly used for design because even significant deviations do not offer much relief. Choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet size or height requirements in the design. For the input capacitor, two 10µF low ESR ceramic capacitors are suggested. For the suggested capacitor, please refer to Table 3 for more details. The selection of Cout is determined by the required ESR to minimize voltage ripple. Moreover, the amount of bulk capacitance is also a key for Cout selection to ensure that the control loop is stable. Loop stability can be checked by viewing the load transient response as described in a later section. The output ripple, $\Delta VOUT$, is determined by:

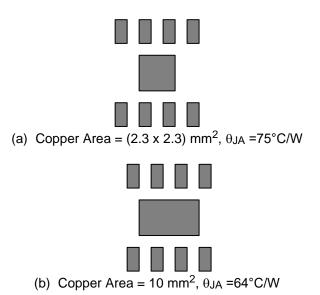
$$\Delta V_{OUT} \leq \Delta I_L \Bigg(ESR + \frac{1}{8fC_{OUT}} \Bigg)$$

The output ripple will be the highest at the maximum input voltage since ∆IL increases with input voltage. Multiple capacitors placed in parallel may be needed to meet the ESR and RMS current handling requirement. Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. However, care must be taken when these capacitors are used at input and output. When a ceramic capacitor is used at the input and the power is supplied by a wall adapter through long wires, a load step at the output can induce ringing at the input, VIN. At best, this ringing can couple to the output and be mistaken as loop instability. At worst, a sudden inrush of current through the long wires can potentially cause a voltage spike at VIN large enough to damage the part.

18.8 **Thermal Considerations**

For continuous operation, do not exceed the maximum operation junction temperature 125°C. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated using the following formula:

 $PD(MAX) = (TJ(MAX) - TA) / \theta JA(EFFECTIVE)$


Where T_J(MAX) is the maximum operation junction temperature, T_A is the ambient temperature and the θ_{JA} is the junction to ambient thermal resistance.

For recommended operating conditions of the RT7272A, the maximum junction temperature is 125°C. The junction to ambient thermal resistance θ_{JA} is layout dependent. For SOP-8 (Exposed Pad) package, the thermal resistance θJA is 75°C/W on the standard JEDEC 51-7 four-layers thermal test board. The maximum power dissipation at TA = 25°C can be calculated by following formula:

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C) / (75^{\circ}C/W) = 1.333W$ (min. copper area PCB layout)

 $PD(MAX) = (125^{\circ}C - 25^{\circ}C) / (49^{\circ}C/W) = 2.04W (70mm^2 copper area PCB layout)$

The thermal resistance θJA of SOP-8 (Exposed Pad) is determined by the package architecture design and the PCB layout design. However, the package architecture design had been designed. If possible, it's useful to increase thermal performance by the PCB layout copper design. The thermal resistance θ JA can be decreased by adding copper area under the exposed pad of SOP-8 (Exposed Pad) package. As shown in Figure 7, the amount of copper area to which the SOP-8 (Exposed Pad) is mounted affects thermal performance. When mounted to the standard SOP-8 (Exposed Pad) pad (Figure 7.a), θ JA is 75°C/W. Adding copper area of pad under the SOP-8 (Exposed Pad) (Figure 7.b) reduces the θJA to 64°C/W. Even further, increasing the copper area of pad to 70mm₂ (Figure 7.e) reduces the θJA to 49°C/W. The maximum power dissipation depends on operating ambient temperature for fixed T_J(MAX) and thermal resistance θJA. The Figure 8 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power dissipation allowed.

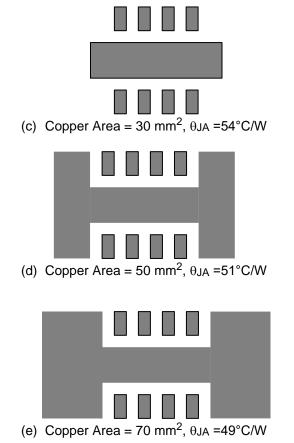


Figure 7. Thermal Resistance vs. Copper Area Layout Design

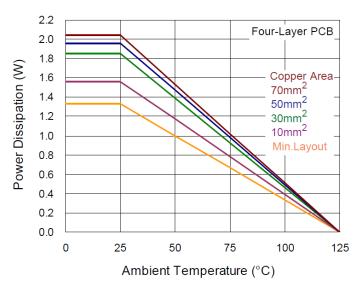


Figure 8. Derating Curve of Maximum Power Dissipation

18.9 **Layout Considerations**

Layout is very important in high frequency switching converter design. If designed improperly, the PCB can radiate excessive noise and contribute to the converter instability. The following points must be considered before starting a layout for the RT7272A.

- Input capacitor must be placed as close to the IC as possible.
- SW should be connected to inductor by wide and short trace.

• The R_L resistor, compensator and feedback components must be connected as close to the device as possible. Figure 9 shows the layout example for the RT7272A.

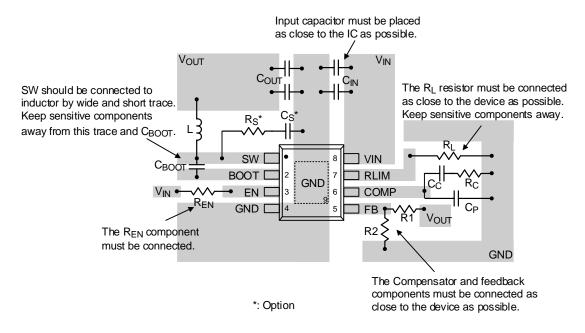
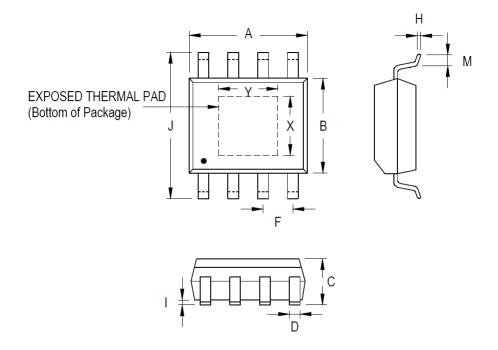


Figure 9. PCB Layout Guide

Table 3. Suggested Capacitors for CIN and COUT

Location	Component Supplier	Part No.	Capacitance (μF)	Case Size
Cin	MURATA	GRM32ER71H475K	4.7	1206
Cin	TAIYO YUDEN	UMK325BJ475MM-T	4.7	1206
Cin	MURATA	GRM31CR61E106K	10	1206
CIN	TDK	C3225X5R1E106K	10	1206
Cin	TAIYO YUDEN	TMK316BJ106ML	10	1206
Соит	MURATA	GRM31CR60J476M	47	1206
Соит	TDK	C3225X5R0J476M	47	1210
Соит	MURATA	GRM32ER71C226M	22	1210
Соит	TDK	C3225X5R1C22M	22	1210

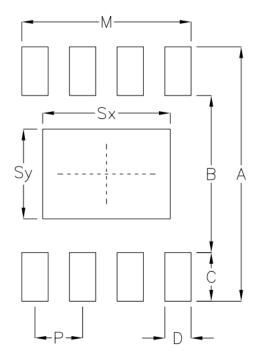
Note 9. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.


Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK

is a registered trademark of Richtek Technology Corporation.

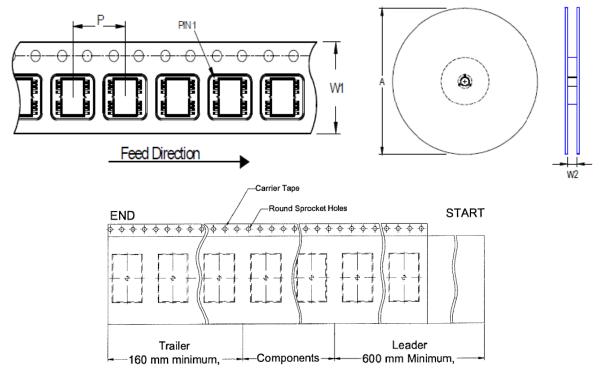
19 Outline Dimension


Cymphy	_1	Dimensions I	n Millimeters	Dimension	s In Inches
Symbo	Symbol		Max	Min	Max
Α		4.801	5.004	0.189	0.197
В		3.810	4.000	0.150	0.157
С		1.346	1.753	0.053	0.069
D		0.330	0.510	0.013	0.020
F		1.194	1.346	0.047	0.053
Н		0.170	0.254	0.254 0.007	
I		0.000	0.152	0.000	0.006
J		5.791	6.200	0.228	0.244
М		0.406	1.270	0.016	0.050
Ontion 1	Х	2.000	2.300	0.079	0.091
Option 1	Υ	2.000	2.300	0.079	0.091
Ontion 2	Х	2.100	2.500	0.083	0.098
Option 2	Υ	3.000	3.500	0.118	0.138

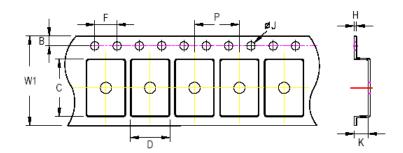
8-Lead SOP (Exposed Pad) Plastic Package

Note 10. The package of the RT7272A uses Option 2.

20 Footprint Information


Dool		Number of Dis			Footp	orint Dim	nension	(mm)			Talaranaa
Pack	kage	Number of Pin	Р	Α	В	С	D	Sx	Sy	М	Tolerance
PSOP-8	Option1	0	1.07	6.00	4.20	1 20	0.70	2.30	2.30	1.51	.0.10
P30P-6	Option2	0	1.27	6.80	4.20	1.30	0.70	3.40	2.40	4.51	±0.10

Note 11. The package of the RT7272A uses Option 2.



Packing Information

21.1 **Tape and Reel Data**

Deal and Torr	Tape Size	Pocket Pitch	cket Pitch Reel Size (A) Units		Trailer	Leader	Reel Width (W2)		
Package Type	(W1) (mm)	(P) (mm)	(mm)	(in)	per Reel	(mm)	(mm)	Min./Max. (mm)	
PSOP-8	12	8	330	13	2,500	160	600	12.4/14.4	

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

Tona Cina	W1	F	>	E	3	F	=	Ø	IJ	Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

21.2 Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description
1	Reel 13"	4	1 reel per inner box Box G
2	HIC & Desiccant (2 Unit) inside	5	6 inner boxes per outer box
3	Caution label is on backside of Al bag	6	Outer box Carton A

Container	Reel		Box			Carton		
Package	Size	Units	Item	Reels	Units	Item	Boxes	Units
PSOP-8	13"	2,500	Box G	1	2,500	Carton A	6	15,000

RT7272A

Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK is a registered trademark of Richtek Technology Corporation.

22 Datasheet Revision History

Version	Date	Description	Item			
10	2024/5/20	Modify	Ordering Information on P2 Marking Information on P2 Absolute Maximum Ratings on P6 Recommended Operating Conditions on P6 Thermal Information on P6 Electrical Characteristics on P7 Operation on P11 Application Information on P17 Footprint Information on P19 Packing Information on P20, 21, 22			