Synchronous Rectifier Controller with Wide Output Voltage Operating Range

General Description

The RT7220A is a high performance Synchronous Rectifier (SR) controller for flyback converters operating in Continuous Conduction Mode (CCM), Discontinuous Conduction Mode (DCM) and Quasi-Resonant (QR) mode. This SR controller senses the drain voltage of MOSFET to determine SR gate on/off so as to minimize turn-off dead-time and enhance efficiency.

The RT7220A is designed to support a wide output voltage range of 3V to 22V, and an HV LDO is especially built-in for the MOSFET gate driver to operate at low output voltage.

Furthermore, the RT7220A offers a Green Mode operation, in light load condition, in which the RT7220A counts the gate pulse of MOSFET to determine the timing for entering green mode and to reduce operation current under 160μ A.

The recommended junction temperature range is -40° C to 125°C, and the ambient temperature range is -40° C to 105°C.

Ordering Information

Note:

Richtek products are Richtek Green Policy compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.

Features

- Suitable for High/Low-Side SR Control of Flyback in CCM, DCM and Quasi-Resonant Mode
- Suitable for 3V to 22V VOUT Range
- <1.2mA Operating Current in Normal Mode (Without SR Driver)
- <160µA Operating Current in Green Mode
- Built-in HV LDO to Supply SR Driver when VOUT Lower than 5V
- Automatic Tracking Control to Optimize Efficiency
- 300kHz Maximum Operation Frequency
- Protection
 - ► SR Gate Driver with 6V Clamp
 - SR Gate Initial Output Low Clamping Voltage before Start-Up
 - Optional Minimum Period Protection
 - ► Optional SR Minimum Off-Time
 - VG Fast Turn-Off (The Total Delay is Less than 35ns)

Applications

- Travel Adapters with Fast Charge Protocols (e.g., FCP, SCP, AFC and QC2.0/QC3.0)
- Travel Adapters with USB PD Type-C Control
- Netcom Adapters

Pin Configuration

Marking Information

RT7220A Version Table

Version		RT7220AMD	RT7220AHD	RT7220AHC	RT7220AHF	RT7220AHJ
VD Voltage Sup	oported	120V	120V	120V	120V	120V
Output Voltage S	upported	3V to 22V				
Maximum Operatior	Frequency	100kHz	150kHz	150kHz	150kHz	150kHz
Minimum Period		Disable	Disable	Disable	Disable	Disable
HV LDO		120V / 60mA				
VG Minimum O	n Time	1500ns	890ns	500ns	890ns	500ns
VG Minimum	Initial	0.45µs	0.45µs	0.3µs	0.45µs	0.45µs
Off Time	VIN Low	1.95µs	1.95µs	1.05µs	1.95µs	1.95µs
VD Falling Time Th VG Trigge	reshold for er		200ns	150ns		
VG Fast Turn-O Threshold	ff Initial d		-10	ImV		–25mV

Simplified Application Circuit

RICHTEK Copyright © 2023 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. www.richtek.com DS7220A-07

Functional Pin Description

Pin No.	Pin Name	Туре	Pin Function
1	VDD	PWR	Supply input voltage.
2	GND	GND	Ground.
3	VBIAS	PWR	Regulated DC bias.
4	VD	AI	Drain voltage sense node for the SR MOSFET.
5	VS	AI	Source voltage sense node for the SR MOSFET.
6	VG	AO	Gate driver output for the SR MOSFET.

Functional Block Diagram

Operation

The RT7220A SR controller is a secondary-side synchronous rectification controller for flyback converters operating in CCM mode, DCM mode and QR mode. The RT7220A senses the MOSFET drain voltage to determine VG turn-on/off, and modulates VG pulse width cycle-by-cycle to minimize turn-off dead time and therefore enhances the efficiency.

Power Structure

The VDD pin supplies power for the IC, and can be directly connected to the power supply output capacitor, of which the VDD pin supports a wide operating range from 3V to 22V, and the VBIAS is regulated from LDO to supply the gate driver when output voltage is under 4.7V.

Ground

In order to accurately detect VDS, the PCB layout of VS and GND must be connected to the Source of the SR MOSFET and system ground independently.

Drain Voltage Sense

The VD pin connects the MOSFET drain pin to detect VD signal as VG turn-on/off criterion. The DC voltage is supplied from VD to VBIAS via a built-in HV LDO.

Gate Driver

The VG pin is a synchronous rectifier MOSFET driver, where the VG's power is supplied by selected either from VDD or VBIAS so as to ensure MOSFET is fully turned-on, and to provide the gate fast turn-off function under a reliable operation.

Source Voltage Sense

The source pin of MOSFET is connected to the input of the source voltage sensing VS pin. To ensure correct drain-sense voltage sensing, it is strongly recommended that the sense node should be directly connected to the source of MOSFET.

3

www.richtek.com

Absolute Maximum Ratings (Note 1)	
VD to GND (Pulse Width 500ns)	
VD to GND (DC Continue)	
VDD to GND	
VG to GND	
VBIAS to GND	
 Power Dissipation, PD @ TA = 25°C 	
SOT-23-6	0.38W
Package Thermal Resistance (Note 2)	
SOT-23-6, θ _{JA}	260.7°C/W
SOT-23-6, θ _{JC}	135°C/W
Junction Temperature	150°C
Lead Temperature (Soldering, 10sec.)	260°C
Storage Temperature Range	
• ESD Susceptibility (Note 3)	
HBM (Human Body Model)	
Except VD Pin	2kV
VD to GND	1kV

Recommended Operating Conditions (Note 4)

Supply Input Voltage, VD	1V to 120V
Supply Input Voltage, VDD	- 3V to 22V
Junction Temperature Range	- –40°C to 125°C
Ambient Temperature Range	- –40°C to 105°C

Electrical Characteristics

(T_A = 25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VDD Section						
VDD Turn-On Threshold Voltage	V _{VDD_ON}		3.05	3.25	3.45	V
VDD Turn-Off Threshold Voltage	V _{VDD_OFF}		2.7	2.8	2.9	V
Hysteresis Voltage for VDD Turn-On/VDD Turn-Off Threshold	Vvdd_hyst		0.35	0.45	0.55	V
VDD Turn-On Deglitch Time	td_vdd_on			50		μS
VDD Turn-Off Deglitch Time	tD_VDD_OFF			5		μs
VDD Start-Up Current	I _{DD_START}			-	150	μA
VDD Operating Current	I _{DD_OP}	SR driver is disabled.		1	1.2	mA
VDD Green-Mode Current	IDD_GREEN	In green mode.		120	160	μA

Copyright © 2023 Richtek Technology Corporation. All rights reserved. www.richtek.com DS7220A-07 October 2023

RT7220A

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VBIAS Section						
		ILOAD = 15mA, VDD > 6V	5.5	6	6.5	
		Iload = 5mA, 4.7V < Vdd < 6V	V _{DD} - 0.15		Vdd	
VBIAS Output Voltage	VBIAS	I_{LOAD} = 5mA, V_{DD} < 4.7V, 9V < V_D < 130V, V_D duty > 20% at 200kHz. The power path for the SR driver is from the VD and cycle by cycle to detect VDD to change power source.	4.5	4.7	4.9	V
VBIAS Load Regulation		1mA < I∨ _{BIAS} < 15mA (Continuance)			200	mV
VBIAS Output Short Circuit Current	IVBIAS_SC		50	65	80	mA
SR Driver Section						
Output High Voltage	Voh_vg	ISOURCE = 20mA	VBIAS - 0.3		VBIAS	V
Output Low Voltage	Vol_vg				0.5	V
Rise Time	tR_VG	$C_L = 4nF$, V _G is from 1V to 4V		50	100	ns
Turn-On Propagation Time	tP_ON	From trigger VTR falling edge to $VG = 0.1V$		50		ns
Fall Time	tF_VG	$C_L = 4nF$, from 80% x V _{OH_VG} to 1V			15	ns
Turn-Off Propagation Time	tP_OFF				30	ns
Initial Output Low Clamping Voltage before Start-up	Vol_vg_ini	$C_{DG} = 330 pF$, $C_{GS} = 27 pF$, VD is from 0V to 40V, tR = 50ns, pulse width = 1 μ s (Note 5)			1.5	V
Internal Pull-Low Resistor	Rgs_low		70	100	130	kΩ
VD Section						
VD Resistor	Rvd		175	250	325	kΩ
VD Scaling Resistor	Kvd		49	50	51	
VTR Sample and Hold Error	Esh_vtr	(Vvtr_high - Vvtr_sh / Vvtr_high) x 100			5	%
VTR Sample and Hold Threshold	Vvtr_sh	VTH_SH = KVTR_SH x VV_TR_HIGH[n-1]	0.665	0.7	0.735	
Mask Time	tMASK	Vvtr > Vth_sh	200	300	400	ns
Initial VTR Blanking Time	tBLANK_VTR_INI		0.35	0.45	0.55	μS
VIN Low VTR Blanking Time	tBLANK_VTR_VINL		1.04	1.2	1.36	μS
Low Level Threshold for Input Voltage	Kvin_low	When VDS < KVIN_LOW X VDD, VTR blanking time will be changed to VIN low blanking time and minimum off time.	2	2.2	2.4	
Low Level Threshold for VD Falling Edge Detection	VLOW_FALLING		-0.4	-0.3	-0.2	V

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Dead Time Comparison High Threshold	Vth_dt		0.4	0.5	0.6	V
VG Fast Turn-Off Initial Threshold	VTH_VGOFF_INI	For RT7220AMD, RT7220AHD, RT7220AHC and RT7220AHF (Note 5)	-13	-10	-7	mV
		For RT7220AHJ (Note 5)	-28	-25	-22	
Maximum VG Fast Turn-Off Limit for Tracking Up/Down	VVGOFF_MAX	With 8-bit tracking control	18	20	22	mV
VG Fast Turn-Off Step Limit for Tracking Up/Down	$\Delta VVGOFF$	$VTH_VGOFF[n] = VTH_VGOFF[n-1] \pm \Delta VVGOFF$	0.062	0.078	0.094	mV
Dead Time Comparator Delay		(Note 5)			40	ns
VD Falling Time Threshold for VG Trigger	tvd_falling	VD falling edge is from VvTR = 0.7 x VvTR_SH to VD = VLOW_FALLING. If VD falling time < tvD_FALLING and disable VTR falling edge debouce time, VG is triggered when VD < VLOW_FALLING. For RT7220AMD, RT7220AHD, RT7220AHC and RT7720AHJ (Note 5)	100	150	200	ns
		For RT7220AHF (Note 5)	170	200	230	ns
VD Edge Threshold for Exit Green Mode Detection	Vvd_edge		-0.4	-0.3	-0.2	V
Debounce Time for Exit/Enter Green Mode Detection	tvd_edge		9	10	11	ms
VD Cycle Number for Enter Green Mode	Nengr	If the number of VG pulses in tvD_EDGE is less than NENGR.		32		
VD Cycle Number for Exit Green Mode	NEXGR	If the number of VD pulses in tvD_EDGE is more than NEXGR.		64		
		For RT7220AHC (Note 5)			Vdd + 3.5	
VD UVP Trigger Voltage	VD_UVP	For RT7220AMD, RT7220AHD, RT7220AHF and RT7720AHJ (Note 5)			Vdd + 7	V
SR Control Section						
		From VG rising edge to VG falling edge. For RT7220AMD (Note 5)	1200	1500	1800	
VG Minimum On Time	tminon_vg	From VG rising edge to VG falling edge. For RT7220AHD and RT7220AHF (Note 5)	710	890	1070	ns
		From VG rising edge to VG falling edge. For RT7220AHC and RT7720AHJ (Note 5)	400	500	600	

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Disable VG Minimum ON Time Threshold	VMINON_DIS	When VD > VMINON_DIS during tMINON_VG, VG will be disabled immediately.	0.4	0.5	0.6	V
Initial VG Minimum OFF Time	tminoff_vg_ini	From VG falling edge to next VG rising edge. For RT7220AMD, RT7220AHD, RT7220AHF and RT7720AHJ (Note 5)	0.39	0.45	0.51	μs
		From VG falling edge to next VG rising edge. For RT7220AHC (Note 5)	0.25	0.3	0.35	
	tminoff vg vinl	From VG falling edge to next VG rising edge. For RT7220AMD, RT7220AHD, RT7220AHF and RT7720AHJ (Note 5)	1.68	1.95	2.22	μs
lime		From VG falling edge to next VG rising edge. For RT7220AHC (Note 5)	0.9	1.05	1.2	
Automatic Tracking Section						
Auto-Tracking Dead Time	tDEAD_TRACK	From VG falling edge to VD = VTH_HIGH_DT	90	100	110	ns

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

- **Note 2**. θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a low effective-thermalconductivity single-layer test board on a JEDEC 51-3 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precautions are recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

Note 5. Guaranteed by design.

Typical Application Circuit

RT7220A

Typical Operating Characteristics

October 2023

RT7220A

2023

RICHTEK Copyright © 2023 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation. DS7220A-07 October 2023 www.richtek.com

RICHTEK Application Information

Richtek's component specification does not include the following information in the Application Information section. Thereby no warranty is given regarding its validity and accuracy. Customers should take responsibility to verify their own designs and reserve suitable design margin to ensure the functional suitability of their components and systems.

Power Selection

The RT7220A provides a wide output voltage range of 3V to 22V, of which a VDD pin can be directly connected to the power output of a converter. In addition, a HV LDO is built-in to supply the gate drive VG for the MOSFET. It is designed in a way that when the VDD is lower than 4.7V, the VG voltage powered by the VBIAS will be clamped to 4.7V at lower output voltage, as shown in Figure1. When the VDD is higher than 4.7V, the VG voltage increases. Once VDD will increase as VDD voltage increases. Once VDD is higher than 6V, the VG voltage will be clamped at 6V to prevent the slower turn-off time.

Moreover, the RT7220A provides the initial clamp function to avoid SR MOSFET gate being falsely turnedon by the parasitic capacitance during start-up.

VG Turn-On

VG is turned-on under the condition when VD voltage is falling during the period (<tvD_FALLING).

Simultaneously, at the same time a current flows through the body diode of the MOSFET, and a negative voltage (VLOW_FALLING) of VDs as shown in Figure 2.

Figure 2. SR Turn-On/Off

VG Turn-Off

The turn-off of VG is triggered when the VDS voltage rises to reach the turn-off threshold (VTH_VGOFF) after a short delay shown in Figure 3. Furthermore, the RT7220A provides the reliable operation and high efficiency in CCM control by minimizing the turn-off dead-time, which is accomplished by modulating the turn-off threshold cycle-by-cycle so as to close to tacking dead-time. However, considering the MOSFET parasitic capacitor variation, and resister (or inductance) delay from gate driver circuit (t_VGOFF_delay), which is shown as Figure 4, should be smaller than minimum tracking dead-time 50%.

Figure 3. VG Minimum On-Time

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

Figure 4. VG Turned Off Delay Time

VG Minimum On-Time

The RT7220A provides a function to prevent an accidental turn-off due to ringing, during this period when the turn-off threshold is blanked, as shown in Figure 3. In normal case, the minimum turn-on time (t_{MINON_VG}) 1µs is suggested.

VG Minimum Off-Time

During the falling edge of VG, the minimum off-time timer is initiated and the turn-on of the SR is avoided until minimum off-time (t_{MINOFF_VG}) expires. This eliminates false turn-on of VG, caused by the DCM ringing, as shown in Figure 5.

Figure 5. VG Minimum Off-Time

Green Mode Operation

For improving the efficiency in light load conditions, the RT7220A features a green mode operation that disables the SR MOSFET and reduces the device operation current. This operation mode is determined by detecting the numbers of VD and VG pulse respectively.

If VG pulse is less than 32 cycles in t_{VD_EDGE} , the device disables the VG output and enters green mode, as shown in Figure 6.

Figure 6. Entry Green Mode

Once VD pulse is more than 64 cycles in the period of tvD_EDGE, the RT7220A exits from green mode and resumes normal operation immediately, as shown in Figure 7.

Figure 7. Exit Green Mode

VD UVP

The VD signal is related to Vin by transformer turn ratio and VDD. However, if VD is lower than VD_UVP, the VG signal will not be triggered as shown in Figure 8.

System VD Falling Time Design Note

VD falling time is determined by parasitic capacitor from primary and secondary side, and also influenced by magnetizing current. Figure 9 shows the measurement waveform; the worst VD falling time happens with minimum Ipeak condition. For RT7220A to precisely trigger VG signal, and considering internal comparator delay time, it is strongly suggested that system VD falling time, t_SYS_VD_FALLING, should be at least 30ns smaller than tVD_FALLING (typ.).

Figure 9. VD Falling Time Measurement Waveform

Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :

 $\mathsf{PD}(\mathsf{MAX}) = (\mathsf{TJ}(\mathsf{MAX}) - \mathsf{TA}) / \theta \mathsf{JA}$

where $T_{J(MAX)}$ is the maximum junction temperature; T_A is the ambient temperature; and θ_{JA} is the junction-toambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is normally 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a SOT-23-6 package, the thermal resistance, θ_{JA} , is 260.7°C/W on a standard JEDEC 51-3 low effective-thermal-conductivity single-layer test board. The maximum power dissipation at TA = 25°C can be calculated as below :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (260.7^{\circ}C/W) = 0.38W$ for a SOT-23-6 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 10 allows the designer to inspect the effect of rising ambient temperature on the maximum power dissipation.

Figure 10. Derating Curve of Maximum Power Dissipation

Outline Dimension

Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
А	0.889	1.295	0.031	0.051		
A1	0.000	0.152	0.000	0.006		
В	1.397	1.803	0.055	0.071		
b	0.250	0.560	0.010	0.022		
С	2.591	2.997	0.102	0.118		
D	2.692	3.099	0.106	0.122		
е	0.838	1.041	0.033	0.041		
Н	0.080	0.254	0.003	0.010		
L	0.300	0.610	0.012	0.024		

SOT-23-6 Surface Mount Package

Copyright © 2023 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation. www.richtek.com

Footprint Information

Deckage	Number of	umber of Footprint Dimension (mm)						Toloranco	
Раскаде	Pin	P1	А	В	С	D	М	Tolerance	
TSOT-26/TSOT-26(FC)/SOT-26	6	0.95	3.60	1.60	1.00	0.70	2.60	±0.10	

Packing Information

Tape and Reel Data

Package Type	Tape Size	Pocket Pitch	Reel Si	ze (A)	Units	Trailer	Leader	Reel Width (W2)
r ackage i ype	(W1) (mm)	(P) (mm)	(mm) (mm) (in) per Reel (mm)	(mm)	Min./Max. (mm)			
SOT/TSOT- 23-6	8	4	180	7	3,000	160	600	8.4/9.9

C, D and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 8mm carrier tape: 0.5mm max.

Tana Siza	Size W1 P		D	В		F		ØJ		Н
Tape Size	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
8mm	8.3mm	3.9mm	4.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

Tape and Reel Packing

Step	Photo/Description	Step	Photo/Description		
1	Reel 7"	4	3 reels per inner box Box A		
2	HIC & Desiccant (1 Unit) inside	5	12 inner boxes per outer box		
3	Caution label is on backside of Al bag	6	Outer box Carton A		

Container	Reel		Вох				Carton			
Package	Size	Units	Item	Size(cm)	Reels	Units	Item	Size(cm)	Boxes	Unit
	7"	7" 3,000	Box A	18.3*18.3*8.0	3	9,000	Carton A	38.3*27.2*38.3	12	108,000
501/1501-23-0			Box E	18.6*18.6*3.5	1	3,000	For Combined or Partial Reel.			

Copyright © 2023 Richtek Technology Corporation. All rights reserved.

Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹	10 ⁴ to 10 ¹¹	10 ⁴ to 10 ¹¹	10⁴ to 10¹¹	10⁴ to 10¹¹	10 ⁴ to 10 ¹¹

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2023 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

www.richtek.com

RT7220A

Datasheet Revision History

Version	Date	Description	Item		
05	2023/4/27	Modify	Electrical Characteristics on P6 Application Information on P15		
06	2023/7/27	Modify (Added RT7220AHF)	Ordering Information on P1 Marking Information on P2 RT7220A Version Table on P2 Electrical Characteristics on P6, 7 Application Information on P15, 17 Packing Information on P20, 21, 22		
07	2023/10/20	Modify (Added RT7220AHJ)	General Description on P1 Marking Information on P2 RT7220A Version Table on P2 Electrical Characteristics on P6, 7		