

Sample & Buy

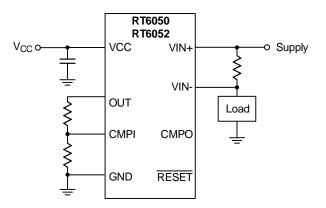
High-Side Measurement Current Shunt Monitor with Comparator

1 General Description

The RT6050/RT6052 device is a high-side currentshunt monitor that contains a current-sense amplifier, a bandgap reference, and a comparator with a latching output. The RT6050/RT6052 senses voltage drops across shunts at common-mode voltages ranging from 2V to 80V. The RT6050/RT6052 series supports two output voltage scales: 20V/V, and 100V/V.

The RT6050 and RT6052 include an open-drain comparator and an internal reference providing a 0.6V threshold. External dividers set the current trip point. The comparator features a latching capability, which can be easily enabled by grounding (or leaving open) the RESET pin.

The RT6050/RT6052 is available in a small 8-pins MSOP package. The recommended junction temperature range is -40° C to 125° C, and the ambient temperature range is -40° C to 85° C.


2 Features

- High Accuracy Current Sensing
- 3.5% Maximum Error Over-Temperature
- 2.9V to 18V Power-Supply Range
- Two Gain Options Available
 - RT6050 = 20V/V
 - RT6052 = 100V/V
- Common-Mode Range: 2V to 80V
- 0.6V Internal Voltage Reference
- Internal Open-Drain Comparator
- Latching Capability on Comparator
- Packages: MSOP-8

3 Applications

- Server, Storage and Network Equipment
- Portable, Battery-Powered Systems
- Point of Load (POL) Power Modules
- Notebook Computers
- High End Digital TVs

4 Simplified Application Circuit

5 Ordering Information

RT605

- Package Type⁽¹⁾

F: MSOP-8

Lead Plating System G: Richtek Green Policy Compliant⁽²⁾

Gain Options

0: 20V/V 2: 100V/V

Note 1.

- Marked with (1) indicated: Compatible with the current requirements of IPC/JEDEC J-STD-020.
- Marked with ⁽²⁾ indicated: Richtek products are Richtek Green Policy compliant.

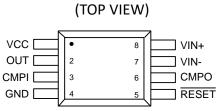
6 Marking Information

RT6050GF

14= : Product Code YMDNN : Date Code

RT6052GF

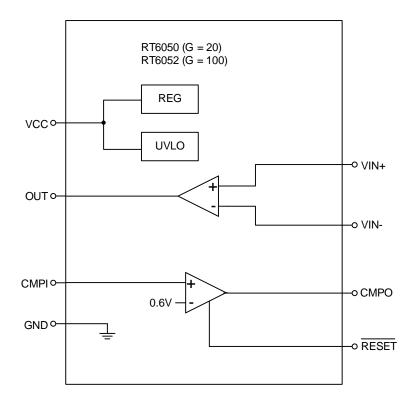
15= : Product Code YMDNN : Date Code


Table of Contents

1	Gener	al Description 1								
2		Features 1								
3		Applications1								
4		fied Application Circuit1								
5		Ordering Information2								
6	Markir	ng Information2								
7		Pin Configuration 4								
8	Functi	Functional Pin Description 4								
9	Functi	onal Block Diagram 4								
10	Absol	ute Maximum Ratings 5								
11		nmended Operating Conditions5								
12		cal Characteristics5								
13	Туріса	Il Application Circuit 8								
14	Туріса	I Operating Characteristics9								
15	•	tion12								
	15.1	Comparator and Reset12								
	15.2	Power On12								
	15.3	Gain Error and Input Offset Voltage13								
16		ation Information14								
	16.1	Selecting the Shunt Resistor14								
	16.2	Input Filtering14								
	16.3	Total Error Analysis14								
	16.4	Max Output Error Estimation15								
	16.5	Input Offset Voltage Error15								
	16.6	Shunt Voltage Gain Error15								
	16.7	PSR Error15								
	16.8	CMR Error15								
	16.9	Input Bias Current Error16								
	16.10	Nonlinearity Error16								
	16.11	Total Error16								
	16.12	Layout Guidelines16								

17	Outlir	ne Dimension18
18	Footp	rint Information19
19	Packi	ng Information20
	19.1	Tape and Reel Data20
	19.2	Tape and Reel Packing21
	19.3	Packing Material Anti-ESD Property22
20	Datas	heet Revision History23

7 Pin Configuration



MSOP-8

8 Functional Pin Description

Pin No.	Pin Name	Pin Function
1	VCC	Power input. Connect a $0.1\mu F$ capacitor as close to the VCC pin as possible.
2	OUT	Voltage output. Vout is proportional to VSENSE (VIN+ – VIN-).
3	CMPI	Comparator input. Positive input of an internal comparator. The negative terminal is connected to a 0.6V internal reference.
4	GND	Ground.
5	RESET	Reset input pin. Reset the output latch of the comparator, active low.
6	СМРО	Open-drain comparator output. Connect RESET to GND to disable the latch.
7	VIN-	Negative current-sensing input. Connect load side to external sense resistor.
8	VIN+	Positive current-sensing input. Connect power side to external sense resistor.

9 Functional Block Diagram

10 Absolute Maximum Ratings

(Note 2)

Supply Input Voltage, Vcc	-0.3V to 19.8V
Power Sensing PINS, VIN+, VIN- (Common Mode), VCM	-6V to 88V
Power Sensing PINS, VIN+ -VIN- (Differential Mode), VSENSE	-6V to 18V
Other Pins, CMPI, CMPO, OUT, RESET	-0.3V to 19.8V
 Power Dissipation, PD @ TA = 25°C 	
MSOP-8	0.27W
Package Thermal Resistance (<u>Note 3</u>)	
MSOP-8, θJA	361.6°C/W
MSOP-8, 0JC	90.4°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	$-65^{\circ}C$ to $150^{\circ}C$
ESD Susceptibility (<u>Note 4</u>)	
HBM (Human Body Model)	4kV

Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Note 3. θ_{JA} is simulated under natural convection (still air) at T_A = 25°C with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard.

Note 4. Devices are ESD sensitive. Handling precautions are recommended.

11 Recommended Operating Conditions

(Note 5)

Supply Input Voltage, Vcc	2.9V to 18V
Common mode input range, V _{CM}	2V to 80V
Ambient Temperature Range	$-40^\circ C$ to $85^\circ C$
Junction Temperature Range	$-40^{\circ}C$ to $125^{\circ}C$

Note 5. The device is not guaranteed to function outside its operating conditions.

12 Electrical Characteristics

($V_{CC} = 12V_{c}$	V _{CM} = 12V,	T₄ = 25°C	unless o	otherwise	specified)
۰.	VCC 12V,		, IA 200,	41110000		opooniou)

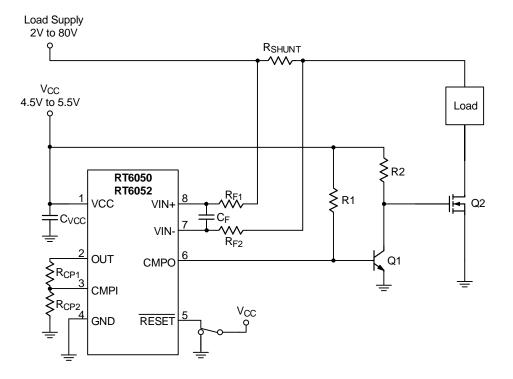
Parameter	Symbol	Test Conditions		Тур	Max	Unit
Power Supply						
Operating Power Supply	Vcc		2.9		18	V
Quiescent Current	IQ	$V_{OUT} = 2V, T_A = -40^{\circ}C \text{ to } 125^{\circ}C$			1200	
		VSENSE = 0mV, TA = -40° C to 125° C			500	μA
POR Rising Threshold	VPOR_R		2.7	2.75	2.85	V

Copyright © 2025 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

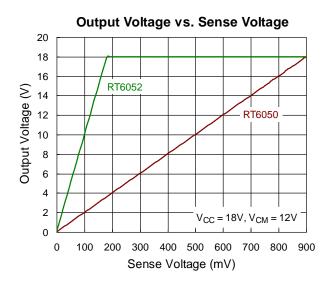
RICHTEK

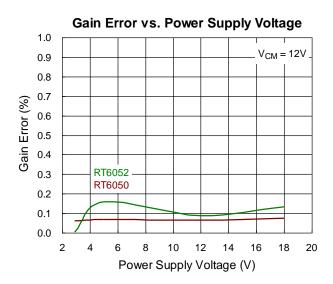
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
POR Falling Threshold	VPOR_F				2.55		V
Current Sense							
Full Scale Sense Input Voltage					0.15	-	V
Common Mode Input Range	Vсм			2		80	V
Common Mode Rejection (<u>Note 6</u>)	CMR	V _{IN+} = 2V to 80V		80	100		dB
Offset Voltage, RTI	Vos	TA = 25°C			±0.5	±2.5	mV
PSR of Offset Voltage, RTI	PSR	Vout = 2V, Vin+ = 18V, Vc T _A = -40°C to 125°C	c = 2.9V		2.5	100	μV/V
Input Bias Current	Ів	VIN- pin			13		μA
Coin	0	RT6050			20		V/V
Gain	G	RT6052			100		V/V
Gain Error	GE%	VSENSE = 20mV to 100mV	,		±0.2	±1	%
Total Output Error	ΔVουτ%	VSENSE = 120mV, VCC = 1	6V		±0.75	±2.2	%
Nonlinearity Error (<u>Note 6</u>)	NLIN%	VSENSE = 20mV to 100mV			0.1		%
Maximum Capacitive Load (<u>Note 6</u>)		No sustained oscillation			10		nF
Output Voltage Range H		VIN- =11V, VIN+= 12V TA = -40°C to 125°C			Vcc -0.15		V
Output Voltaga Banga I		VIN- = 0V, VIN+ = -0.5V RT6050			4	100	m)/
Output Voltage Range L		$T_A = -40^{\circ}C$ to $125^{\circ}C$	RT6052		4	350	mV
Denducidth (Note C)		GAIN = 20, C _{LOAD} = 5pF, 1	unity gain		160		kHz
Bandwidth (<u>Note 6</u>)	BW	GAIN = 100, CLOAD = 5pF,	unity gain		36		kHz
Phase Margin (<u>Note 6</u>)	P.M	CLOAD < 10nF			40		0
Claw Data	00	RT6050			0.5		
Slew Rate	SR	RT6052			1.5		V/μs
Settling Time	Тѕт	VSENSE = 10mV to 100mV	RT6050		2		μS
eettiinig tiinte		10%~90% Vout CLOAD = 5pF	RT6052		6		pre
Noise Density, RTI (<u>Note 6</u>)		Frequency = 10k			40		nV/√Hz
Comparator	•						•
Threshold	Vтн	$T_A = -40^{\circ}C$ to $125^{\circ}C$		585	600	615	mV
Hysteresis	VHYS	$T_A = -40^{\circ}C$ to $85^{\circ}C$			-8		mV
In mut Direc Orman		TA = 25°C			0.005	10	nA
Input Bias Current	Ів_см	TA = -40°C to 125°C				15	nA
Maximum Input					Vcc -1.5		V

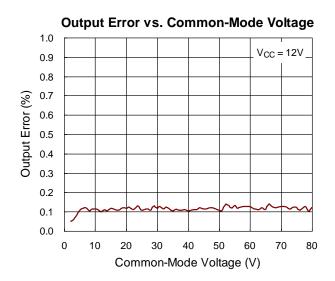
Copyright © 2025 Richtek Technology Corporation. All rights reserved. www.richtek.com

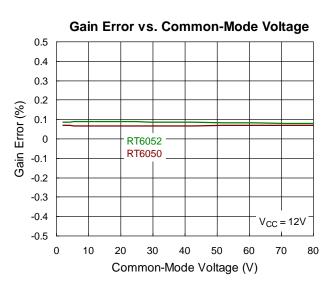

RT6050/RT6052

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit				
Output Open-Drain										
Voltage Gain (<u>Note 6</u>)	CMPGAIN			200		V/mV				
Leakage Current	Ileak			0.000 1	1	μA				
Dropout Voltage	Vdrop	ILOAD = 2.35mA		125	220	mV				
Response Time	Trs	RL to 5V, CL = 15pF 100mV input step with 10mV overdrive		1.3		μs				
RESET										
RESET Pin Threshold	Vrst_h	High Level	1			V				
	Vrst_l	Low Level			0.4	V				
RESET Input Impedance				2		MΩ				
RESET Minimum Pulse Width				1.5		μs				
RESET Propagation Delay	tDLY_PD			1.6		μs				

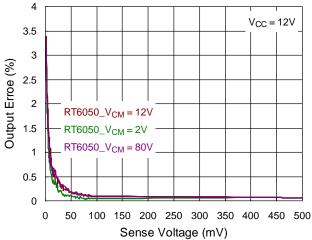

Note 6. Specifications are guaranteed by design, not production tested.

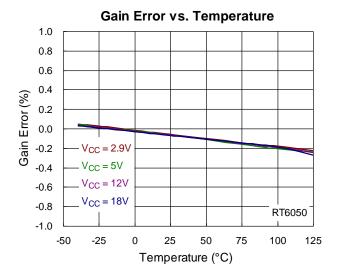


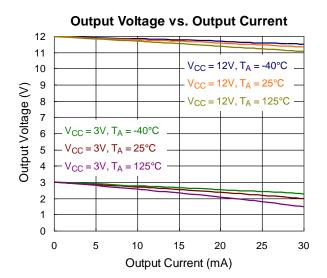

13 Typical Application Circuit



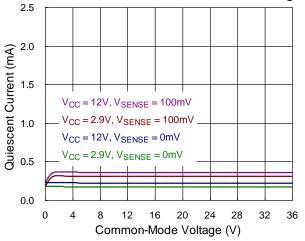
14 Typical Operating Characteristics

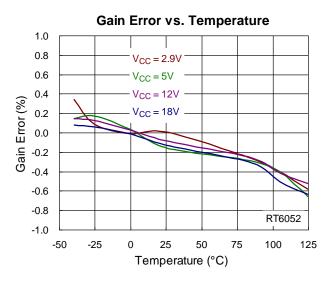


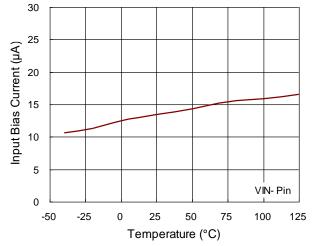


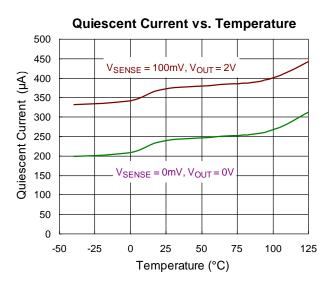


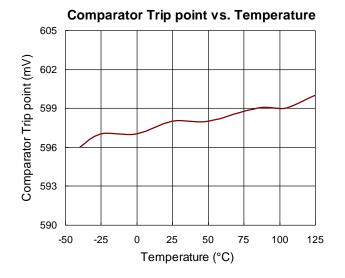
Output Error vs. Sense Voltage




Offset Voltage vs. Temperature 1.0 0.8 $V_{CC} = 2.9V$ 0.6 $V_{\rm CC} = 12V$ Offset Voltage (mV) 0.4 $V_{CC} = 18V$ 0.2 $V_{CC} = 5V$ 0.0 -0.2 -0.4 -0.6 -0.8 V_{CM} = 12V -1.0 -50 -25 0 25 50 75 100 125 Temperature (°C)







Copyright © 2025 Richtek Technology Corporation. All rights reserved. www.richtek.com

RICHTEK is a registered trademark of Richtek Technology Corporation. RT6050 RT6052 DS-02

15 Operation

The RT6050/RT6052 devices are high-side, unidirectional, current-shunt monitors with a high common-mode input range from 2V to 80V. The devices are available with two output voltage scales: 20V/V and 100V/V, with up to 500kHz bandwidth. The overcurrent protection is also available by internal comparator; when the voltage at CMPI pin is higher than internal reference 0.6V, the CMPO pulls high to indicate overcurrent situation. Connect a divider from the OUT pin to CMPI pin to set the overcurrent trip point, the devices provide an open-drain comparator with a latching function that allows the output signal of comparator to be latched or non-latched by RESET pin setting.

15.1 Comparator and Reset

The RT6050/RT6052 devices incorporate an open-drain comparator. This comparator typically has 1.3μ s (typical) response time. The output of the comparator latches and is reset through the RESET pin. From Figure 1, the control logic is described in 3 stages.

Stage1. VCMPO goes high after VCMPI increases and eventually exceeds 0.6V.

Stage2. When VRESET is high, VCMPO is kept high even if VCMPI decreases and falls below 0.6V; when the VRESET goes low, VCMPO also goes low.

Stage3. When VRESET is low, VCMPO goes high/low depending on VCMPI higher/lower than 0.6V.

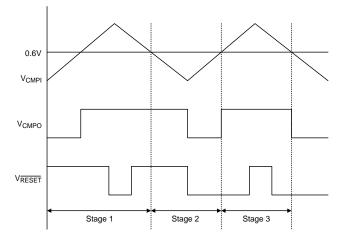
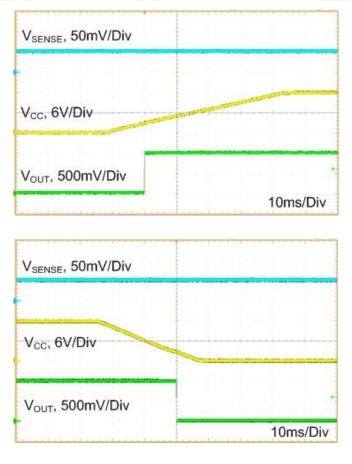



Figure 1. Comparator Latching and Reset Logic

15.2 Power On

The RT6050/RT6052 implements a power-on reset (POR) function to prevent operation without fully turning on the internal control circuit. When VCC increases and eventually becomes higher than the POR rising threshold (2.75V, typical), the device starts outputting voltage; in contrast, when VCC is lower than the POR falling threshold (2.55V, typical), the device stops outputting voltage.

RT6050/RT6052

15.3 Gain Error and Input Offset Voltage

Using a two-step method to characterize gain error and offset voltage, the gain can first be obtained by measuring the output voltage at different sense voltages.

$$G = \frac{V_{OUT1} - V_{OUT2}}{100 \text{mV} \cdot 20 \text{mV}}$$

Where

- VOUT1 = output voltage with VSENSE = 100mV
- VOUT2 = output voltage with VSENSE = 20 V

Then the offset voltage is measured at VSENSE = 100mV, and is referred to the input (RTI) of the current shunt monitor, as shown in <u>Electrical Characteristics</u>: Current-Shunt Monitor.

VRTI (Referred-To-Input) =
$$\left(\frac{V_{OUT1}}{G}\right)$$
-100mV

16 Application Information

(<u>Note 7</u>)

16.1 Selecting the Shunt Resistor

The selected value for the shunt resistor, RSHUNT, depends on the application and is a compromise between smallsignal accuracy and maximum permissible voltage loss in the measurement line. High values of RSHUNT provide better accuracy at lower currents by minimizing the effects of offset, while low values of RSHUNT minimize voltage loss in the supply line. For best performance, select RSHUNT to provide approximately 50mV to 100mV of sense voltage for the full-scale current in each application. Maximum input voltage for accurate measurements is 500mV, but output voltage is limited by supply voltage Vcc.

16.2 Input Filtering

In some applications, the current being measured may be inherently noisy. In the case of a noisy signal, filtering after the output of the current sense amplifier is often simpler; however, this location negates the advantage of the low output impedance of the internal buffer.

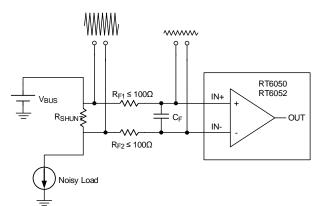


Figure 2. Input Filter

Other applications may require filtering at the input of the current sense amplifier. <u>Figure 2</u> shows the recommended schematic for input filtering.

Input filtering is complicated by the fact that the mismatch between added resistance of the filter resistors and the associated resistance can adversely affect gain, CMR, and offset voltage, Vos. The effect on Vos is partly due to input bias currents as well. As a result, the value of the input resistors should be limited to 100Ω or less.

16.3 Total Error Analysis

To optimize the design, the first is to analyze each error contributed; the main influences of sense voltage errors can be identified as follows:

- The tolerance of the shunt resistor (RSHUNT)
- Sense offset voltage, Vos. When the sense voltage is low, particularly at low load currents and small shunt resistance, the error is dominated by the input offset error.
- Gain Error, GE%
- Power supply rejection (PSR) of the offset voltage, PSR
- Common mode rejection, CMR
- The offset voltage caused by input bias current
- Nonlinearity Error, NLIN%

16.4 Maximum Output Error Estimation

Here is an example. The system bus voltage V_{CM_SYS} connects to VIN+ = 18V, system supply voltage V_{CC_SYS} = 5V, shunt resistor accuracy is 1%, 10m Ω 1.5W, the load current is 10A. To set the design goals, the maximum output voltage errors are calculated in the following sections.

16.5 Input Offset Voltage Error

The rate of offset error in the total error can be estimated directly from the specification table. The input offset voltage is 2.5mV at T_A = 25°C. The error due to offset can be obtained using the following equation:

$$V_{OS_err} = \frac{V_{OS(max)}}{V_{SENSE}} \times 100\% = \frac{2.5mV}{10m\Omega \times 10A} \times 100\% = 2.5\%$$

16.6 Shunt Voltage Gain Error

From the Electrical Characteristics, the maximum gain error is 1%

16.7 PSR Error

The PSR error estimates the error caused by different supply voltages. The RT6050/RT6052 device specification provides the specified power supply voltage for the input offset voltage specification as $V_{CC_DS} = 2.9V$. When the system supply voltage is not exactly 2.9V, it may result in an additional error. The RT6050/RT6052 device specifies the maximum PSR as 100μ V/V. Calculate the PSR error using the equation below:

 $PSR_err = \frac{\left|V_{CC_DS} - V_{CC_SYS}\right| \times PSR}{V_{SENSE}} \times 100\%$ $= \frac{\left|2.9 - 5\right| \times 100 \frac{\mu V}{V}}{10 m \Omega \times 10A} \times 100\% = 0.21\%$

16.8 CMR Error

The CMR error means the input offset error is influenced by variations of the common-mode voltage. In real conditions, calculate the maximum input offset by determining the actual common-mode voltage as applied to the RT6050/RT6052. According to the RT6050/RT6052 device specification, the minimum common-mode rejection ratio is given as 80dB (100μ V/V). The offset voltage in the datasheet is specified with a common-mode voltage, VCM_DS, of 12V. To calculate the actual common-mode error at the system bus voltage:

$$80dB = \frac{1}{10^{\left(\frac{80dB}{20}\right)}} \times 10^{6} \times \frac{\mu V}{V} = 100 \frac{\mu V}{V}$$
$$CMR_err = \frac{\left|V_{CM_DS} - V_{CM_SYS}\right| \times CMR}{V_{SENSE}} \times 100\%$$

$$= \frac{|12-18| \times 100 \frac{\mu V}{V}}{10 m\Omega \times 10A} \times 100\% = 0.6\%$$

16.9 Input Bias Current Error

The input bias current flowing through the shunt resistor causes an additional offset; this error is calculated with respect to the ideal voltage across the sense voltage

$$I_{B_err} = \frac{I_B \times R_{SHUNT}}{V_{SENSE}} \times 100\% = \frac{13\mu A \times 10m\Omega}{10m\Omega \times 10A} \times 100\%$$
$$= 0.00013\%$$

16.10 Nonlinearity Error

The nonlinearity error, as shown in Figure 3, is the difference between the actual gain and the ideal value. In ideal cases, the voltage gain is constant over the full sense range, but in real applications, the voltage gain is not exactly constant. The nonlinearity gain may cause additional errors. In the specification, the RT6050/RT6052 gives the nonlinearity error as 0.1% over a sense voltage range from 20mV to 100mV.

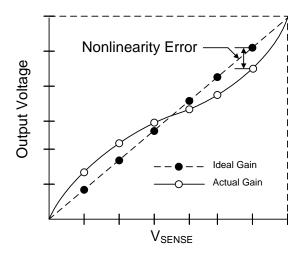


Figure 3. Nonlinearity Error

16.11 Total Error

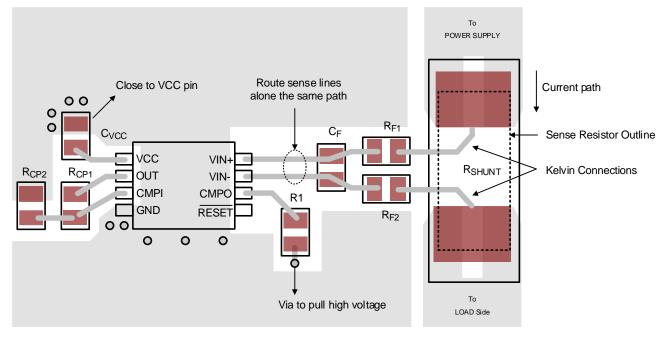
Use the following equation to calculate the worst case of total error:

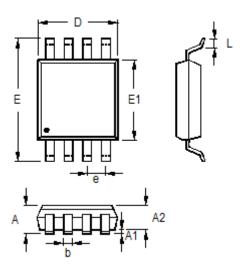
$$Total_err = \sqrt{(GE\%)^2 + (R\%)^2 + (V_{OS_err})^2 + (PSR_err)^2 + (CMR_err)^2 + (I_{B_err})^2 + (NLIN\%)^2}$$
$$= \sqrt{(1\%)^2 + (1\%)^2 + (2.5\%)^2 + (0.21\%)^2 + (0.6\%)^2 + (0.0013\%)^2 + (0.1\%)^2}$$

= 2.94%

16.12 Layout Guidelines

- A Kelvin sense arrangement is required for best performance. Connect the input pins (VIN+ and VIN-) to the sensing resistor using a 4-wire connection.
- PCB trace resistance from the sense resistor to the VIN+ and VIN- pins can affect the power measurement accuracy. Place the sense resistors as close as possible to the RT6050/RT6052 and do not use minimum width PCB traces.
- Place the power-supply bypass capacitor 0.1µF as close as possible to the supply and ground pins.

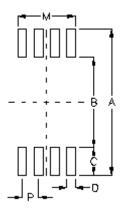



Figure 4. PCB Layout Guide

Note 7. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

Copyright © 2025 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation.

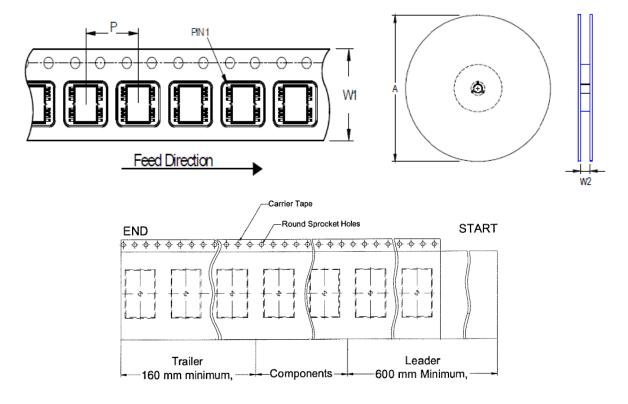
17 Outline Dimension


Cumb al	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.810	1.100	0.032	0.043	
A1	0.000	0.150	0.000	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.220	0.380	0.009	0.015	
D	2.900	3.100	0.114	0.122	
е	0.6	50	0.0	26	
E	4.800	5.000	0.189	0.197	
E1	2.900	3.100	0.114	0.122	
L	0.400	0.800	0.016	0.031	

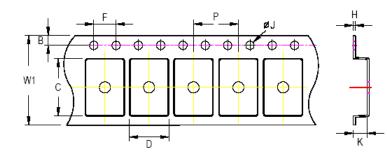
8-Lead MSOP Plastic Package

www.richtek.com

18 Footprint Information



Deekege	Number of	Footprint Dimension (mm)						Toloropoo	
Package	Pin	Р	А	В	С	D	М	Tolerance	
MSOP-8	8	0.65	5.80	3.60	1.10	0.35	2.30	±0.10	



19 Packing Information

19.1 Tape and Reel Data

Package Type	Tape Size	Pocket Pitch	Reel Size (A)		Units	Trailer	Leader	Reel Width (W2)
	(W1) (mm)	(P) (mm)	(mm) (in)		per Reel	(mm)	(mm)	Min./Max. (mm)
MSOP-8	12	8	330	13	2,500	160	600	12.4/14.4

C, D and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 1.0mm max.

Tape Size	W1	Р		В		F		ØJ		К		Н
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Max.
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	1.5mm	1.7mm	0.6mm

Copyright © 2025 Richtek Technology Corporation. All rights reserved.

19.2 **Tape and Reel Packing**

Step	Photo/Description	Step	Photo/Description
1	Reel 13"	4	1 reel per inner box Box G
2		5	
	HIC & Desiccant (2 Unit) inside		6 inner boxes per outer box
3		6	
	Caution label is on backside of Al bag		Outer box Carton A

Container	Reel			Box		Carton		
Package	Size	Units	Item	Reels	Units	Item	Boxes	Units
MSOP-8	13"	2,500	Box G	1	2,500	Carton A	6	15,000

19.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2025 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

www.richtek.com

20 Datasheet Revision History

Version	Date	Description	Item
00	2022/2/16	Final	
01	2022/11/23	Modify (add RT6050)	General Description on page 1 Features on page 1 Applications on page 1 Simplified Application Circuit on page 1 Ordering Information on page 2 Marking Information on page 2 Functional Block Diagram on page 4 Operation on page 4 Electrical Characteristics on page 6 Typical Application Circuit on page 9 Typical Operating Characteristics on page 10 Application Information on page 13
02	2025/1/22	Modify	General Description on page 1 Ordering Information on page 2 Functional Block Diagram on page 4 Application Information on page 14, 17 Packing Information on page 20 to 22