1.8V to 5.5V, 0.6A/1A, 2.3A I^Q Step-Down Converter in 0.35mm Pitch WCSP Package

1 General Description

The RT5716 is a high switching frequency synchronous step-down converter with a quiescent current of 2.3μ A. The device uses Ripple-Based Constant-On-Time (RBCOT) control to enhance load and line transient response, optimizing performance over a wide range of loads and output capacitors.

The RT5716 has an input voltage range from 1.8V to 5.5V, making it suitable for battery applications. It provides 16 selectable output voltage levels by connecting a resistor between RSEL/MODE pin and GND. The Pulse Frequency Modulation (PFM) design maintains high efficiency during light loads. While at higher load conditions, the device automatically switches to PWM. The device can deliver up to 1A loading current. In shutdown mode, the supply current is typically 55nA, which is excellent for reducing power consumption.

The RT5716 is available in TWL-CSP-6B 0.69x1.04 (BSC) and WDFN-6L 1.5x1.5 (FC) packages, which are the smallest packages for small-size applications.

The recommended junction temperature range is -40°C to 125°C, and the ambient temperature range is -40°C to 85° C.

2 Ordering Information

RT5716口-

Note 1.

Richtek products are Richtek Green Policy compliant and marked with ⁽¹⁾ indicates compatible with the current requirements of IPC/JEDEC J-STD-020.

3 Features

- ⚫ **4MHz Switching Frequency**
- ⚫ **2.3A Operating Quiescent Current**
- ⚫ **Input Voltage Range: 1.8V to 5.5V**
- ⚫ **16 Selectable Output Voltages by RSEL/MODE Pin and Fixed Output Voltage Without RSEL Setting**
- ⚫ **RBCOT Control for Transient Response**
- ⚫ **PFM and Force Pulse Width Modulation (FPWM) Mode**
- ⚫ **Output Voltage Discharge**
- ⚫ **OCP, OTP, and UVLO Protection**
- ⚫ **Support up to 1A Loading Current**

4 Applications

- ⚫ Hand-Held Devices
- ⚫ PCB Area Limited Applications
- ⚫ Asset Tracking Devices
- ⚫ Battery Powered Equipment
- ⚫ Wearable Devices
- ⚫ Internet of Things

5 Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

6 Simplified Application Circuit

6.1 Adjustable VOUT by RSET Setting

6.2 Fixed VOUT

7 Functional Table

Table of Contents

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. DS5716-01 October 2024 www.richtek.com

3

8 Pin Configuration

TWL-CSP-6B 0.69x1.04 (BSC) WDFN-6L 1.5x1.5 (FC)

9 Functional Pin Description

(TOP VIEW)

10 Functional Block Diagram

RT5716

11 Absolute Maximum Ratings

[\(Note 2\)](#page-5-2), [\(Note 3\)](#page-5-3)

• Power Dissipation, Pp $@$ T _A = 25 ^o C	
• Package Thermal Resistance (Note 4)	
• ESD Susceptibility (Note 5)	

Note 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

- **Note 3**. The operating voltage for RSEL/MODE is recommended to be lower than the input voltage.
- Note 4. θ JA is measured under natural convection (still air) at T_A = 25°C with the component mounted on a high effective-thermalconductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the bottom of the package.
- **Note 5**. Devices are ESD sensitive. Handling precautions are recommended.

12 Recommended Operating Conditions

[\(Note 6\)](#page-6-1)

Note 6. The device is not guaranteed to function outside its operating conditions.

13 Electrical Characteristics

(V_{IN} = 3.6V, C_{IN} = 4.7µF, C_{OUT} = 4.7µF x 2, L = 0.47µH, T_J = -40°C to 125°C, typical values are at T_J = 25°C, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit		
Buck Regulator								
Undervoltage-Lockout Rising Threshold	VUVLO R	VIN rising, $T_J = -40^{\circ}C$ to 125°C (Note 7)	$-$	1.7	1.8	\vee		
Undervoltage-Lockout Falling Threshold	VUVLO_F	VIN falling, $T_J = -40^{\circ}C$ to 125°C (Note 7)	--	1.65	1.75	\vee		
Undervoltage-Lockout Deglitch Time	tDEGLITCH_UVLO		--	32	--	μS		
Quiescent Current into VIN Pin (Switching)	IQ_VIN_SW	$EN = VIN$, $IOUT = OA$, $VOUT = 1.2V$, RSEL/MODE = GND	--	2.5	--	μA		
Quiescent Current (Force PWM Mode)	IQ_VIN_PWM	$EN = VIN$, $IOUT = OA$, $VOUT = 1.2V$, $RSEL/MODE = VIN$ (after start-up)	$- -$	8	\overline{a}	mA		
Quiescent Current into VIN Pin (Non-Switching)	l _{Q_VIN_NSW}	$EN = VIN$, $IOUT = OA$, $VOUT = 1.2V$, $T_J = -40^{\circ}C$ to 85 $^{\circ}C$ (Note 7), $RSEL/MODE = GND$	--	2.3	3.7	μA		
Shutdown Current	ISHDN	$EN = GND$, shutdown current into VIN RSEL/MODE = GND, $T_J = -40^{\circ}C$ to 85°C (Note 7)	$-$	55	250	nA		
Bias Current into VO Pin	BIAS_VO	$EN = VIN$, $VOUT = 1.2V$, (internal 8M resistor divider), $T_J = -40^{\circ}C$ to 85°C (Note 7)	--	100	400	nA		
Switching Frequency	fsw	$EN = VIN$, $IOUT = OA$, $VOUT = 1.8V$, $RSEL/MODE = VIN$ (after start-up)	$- -$	4	$-$	MHz		
Positive Inductor Peak Current Limit		$1.8V \leq$ VIN \leq 5.5V, OCP Select 1 = 1.2A, $T_J = -40^{\circ}C$ to 125°C (Note 7)	1.02	1.2 1.38	A			
	ILIM_PEAK	$1.8V \leq$ VIN \leq 5.5V, OCP Select 2 = 1.7A, $T_J = -40^{\circ}C$ to 125°C (Note 7)	1.44	1.7	1.96			
Positive Inductor Valley Current Limit	ILIM_VALLEY	$1.8V \leq$ Vin \leq 5.5V, OCP Select 1 =1.2A, $T_J = -40^{\circ}C$ to 125°C (Note 7)	0.73	0.86	0.99	A		
		$1.8V \leq$ V _{IN} \leq 5.5V, OCP Select 2 = 1.7A, $T_J = -40^{\circ}C$ to 125°C (Note 7)	1.15	1.36	1.57			
Negative Inductor Peak Current Limit	ILIM PEAK NEG	$1.8V \leq V_{IN} \leq 5.5V$	--	-1		A		

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. DS5716-01 October 2024 www.richtek.com

RT5716

Note 7. This specification is guaranteed by design.

9

RT5716

14 Typical Application Circuit

14.1 TWL-CSP-6B 0.69x1.04 (BSC)

Note 8. CREMOTE is an additional input capacitor that is not essential for normal operation. However, it can be utilized to minimize input voltage ripple.

14.2 WDFN-6L 1.5x1.5 (FC)

15 Typical Operating Characteristics

RT5716

Operating Quiescent Current vs. Input

Power Save Mode Efficiency

Quiescent Current vs. Input Voltage

Operating Quiescent Current vs. Input Voltage

Power Save Mode Efficiency

Power Save Mode Efficiency 95 l Titli RT5716X-ABA 90 85 Ħ 80 ┯╈ \perp 75 $V_{\text{IN}} = 2.5V$ Efficiency (%) $V_{IN} = 3.3V$ 70 $V_{IN} = 3.6V$ 65 $= 4.2V$ 60 $= 5V$ 55 50 $V_{\text{OUT}} = 1.2V,$
44.2k Ω to GND 45 $RSELMODE =$ 1111111 40 1111111 0.001 0.01 0.1 1 10 100 1000 Output Current (mA)

Efficiency (%)

Output Voltage vs. Output Current

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. www.richtek.com **DS5716-01** October 2024

Switching Frequency (Zoom In) vs. Output Current

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. DS5716-01 October 2024 www.richtek.com

V_{OUT}

V_{SW}

^ISW

Typical Operation Forced PWM Mode

Typical Operation Power Save Mode

Load Transient Power Save Mode

Time (200ns/Div)

V_{IN} = 3.6V, V_{OUT} = 1.2V, I_{OUT} = 0A, FPWM mode, RSEL/MODE = V_{IN} after start-up

Time (40us/Div)

AC Load Sweep Forced PWM Mode

Time $(100\mu s/Div)$

 $I_{\text{OUT}} = 1 \text{mA}$ to 1A, PFM/PWM mode

 $RSEL/MODE = 44.2k\Omega$ to GND

 V_{IN} = 3.6V $V_{OUT} = 1.2V$

AC Load Sweep Power Save Mode

2

1.2V

 V_{OUT} (10mV/Div)

^ISW (500mA/Div)

> EN (1V/Div)

^ISW (400mA/Div)

 V_{OUT} (500mV/Div)

^IOUT (500mA/Div) RT5716P

4

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

16 Operation

The RT5716 is a high switching frequency synchronous step-down converter, with an input voltage range from 1.8V to 5.5V. It provides 16 selectable output voltage levels by connecting a resistor between RSEL/MODE pin and GND. The PFM design maintains high efficiency during light loads. While at higher load conditions, the device automatically switches to PWM. In shutdown mode, the device is disabled, which is excellent for reducing power consumption. To prevent damaging by abnormal operations, the protection mechanisms include Undervoltage-Lockout (UVLO), Over-Temperature Protection (OTP), and Overcurrent Protection (OCP).

16.1 Enable

The device can be enabled or disabled by the EN pin. When the EN pin is higher than the logic-high threshold, the IC enters normal operation. When the EN pin is set to low, the device transitions to shutdown mode. In shutdown mode, the converter stops switching, the internal control circuitry turns off, and the discharge function is triggered.

The EN low level time must be longer than 200 us for the internal circuit reset time.

16.2 Undervoltage-Lockout Protection (UVLO)

To protect the chip from operating at insufficient supply voltage, UVLO is required. When the input voltage is lower than the UVLO falling threshold, the device will be locked out.

16.3 100% Duty Cycle Operation

The converter enters 100% duty cycle operation once the input voltage decreases and the difference between the input and output voltage is lower than VTH_100-. The output voltage follows the input voltage minus the voltage drop across the internal P-MOSFET and the inductor. Once the input voltage increases and reaches the 100% mode exit threshold, VTH_100+, the converter returns to normal switching operation. See [Figure 1.](#page-18-4)

Figure 1. Auto Bypass Mode

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. DS5716-01 October 2024 www.richtek.com

RT5716

16.4 Over-Temperature Protection (OTP)

When the junction temperature exceeds the OTP threshold, the IC will shut down the switching operation. Once the junction temperature cools down and falls below the OTP lower threshold, the converter will automatically resume switching.

16.5 Overcurrent Protection and Short Circuit Protection

The OCP and SCP functions are implemented by high-side MOSFET and low-side MOSFET. When the inductor current reaches the peak current-limit threshold, the high-side MOSFET will be turned off. The low-side MOSFET turns on to discharge the inductor current until it falls below the valley current-limit threshold. After peak current limit triggered, the maximum inductor current is determined by the inductor current rising rate and the response delay time of the internal network.

During the OCP and SCP period, the output voltage drops below the set threshold (0.2V typical), and the current limit value is reduced to a low current limit level to lower the device loss, reduce the heat and prevent further damage to the chip.

Due to internal propagation delay (tDLY_LIM = 50ns), the actual inductor current can exceed the static current limit during that time. The dynamic current limit can be calculated as follows:

 $I_{\text{Current limit peak}} = I_{\text{LIM_PEAK}} + \frac{(V_{\text{IN}}-V_{\text{OUT}})}{I}$ $\frac{10017}{L}$ × t_{DLY_LIM}

Figure 2. Current Limit

16.6 Pulse Frequency Modulation and Ton Extend Mode

In PFM mode, the converter does not switch at a fixed frequency as it does in PWM mode. Instead, it detects the voltage of VOUT. When the voltage is lower than the set value, the high-side MOSFET turns on. The turn-on time of the high-side MOSFET is calculated based on the frequency, VIN, and VOUT. After the high-side MOSFET turns off, the low-side MOSFET turns on until the inductor current reaches zero.

PFM operation reduces the converter's switching frequency to very low values, typically down to a few kilohertz, during light load conditions. This reduction in switching frequency helps minimize switching losses, significantly increasing the light load efficiency of the converter. Furthermore, in the RT5716X-XAA and RT5716X-XBA at ultralight load, the high-side MOSFET on-time is extended to further reduce the switching frequency and improve overall efficiency.

16.7 Output Voltage Selection

The RT5716 provides one fixed and 16 selectable levels of VOUT which can be set with a single external resistor connected between the RSEL/MODE pin and GND. The VOUT level selector circuit starts to detect the value of the resistor once the converter is enabled, and the control circuitry is powered up. The VOUT level is set during the VOUT level setup time (tSU_VOUT).

Note 9. 6 resistor series, 1% accuracy, temperature coefficient better than or equal to ±200 ppm/°C.

17 Application Information

[\(Note 10\)](#page-25-0)

The basic RT5716 application circuit is shown in the [Typical Application Circuit.](#page-9-0) This section discusses the external component selection and the considerations of practical applications by referring to the electrical characteristics.

17.1 Inductor Selection

The recommended power inductor is 0.47μ H for $I_{\text{OUT}} = 600\text{mA}$ and $I_{\text{OUT}} = 1$ A. The inductor saturation current rating needs to be carefully chosen to follow the overcurrent protection design considerations. In applications, it is necessary to select an inductor with low DCR to provide good performance and efficiency.

17.2 CIN and COUT Selection

The input capacitance, CIN, is needed to filter the trapezoidal current at the source of the top MOSFET. To prevent large ripple voltage, a low ESR input capacitor sized for the maximum RMS current should be used. RMS current is given by:

$$
I_{RMS} = I_{OUT(MAX)} \times \frac{V_{OUT}}{V_{IN}} \times \sqrt{\frac{V_{IN}}{V_{OUT}} - 1}
$$

This formula has a maximum at $V_{IN} = 2 \times V_{OUT}$, where $I_{RMS} = I_{OUT}/2$. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief. It is advisable to choose a capacitor rated at a higher temperature than required. Several capacitors may also be paralleled to meet size or height requirements in the design.

The selection of COUT is determined by the Effective Series Resistance (ESR) that is required to minimize voltage ripple and load step transients, as well as the amount of bulk capacitance necessary to ensure that the control loop is stable. Loop stability can be checked by viewing the load transient response as described in a later section.

The output ripple, Δ VOUT, is determined by:

$$
\Delta V_{\text{OUT}} \leq \Delta I_{L} \left(\text{ESR} + \frac{1}{8 \times f_{\text{SW}} \times C_{\text{OUT}}} \right)
$$

17.3 Output Voltage in PFM Mode

Since the RT5716 adopts valley control in PFM mode, which means that the switching node (SW) starts to switch when the output voltage drops to the valley voltage (see [Figure 3\)](#page-21-4), the average output voltage (VOUT_{avg}) can be calculated by Equation 1:

$$
V_{\text{OUT_avg}} = V_{\text{OUT_valley}} + \frac{1}{2}V_{\text{OUT_ripple}} \tag{1}
$$

where VOUT valley is the valley voltage, and VOUT ripple is the output voltage ripple.

Figure 3. Output Voltage Waveform

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. www.richtek.com **DS5716-01** October 2024

The output voltage ripple originates from the excessive charge, ΔQ , stored in the inductor (see [Figure 4\)](#page-22-1) and ΔQ can be calculated by Equation 2:

$$
\Delta Q = \frac{1}{2} \times \Delta i_L \times t \times k \tag{2}
$$

where ∆iL is the inductor current ripple, t is the switching period in CCM operation and k is a coefficient dependent on the nominal switching frequency. Since the on-time of the high-side MOSFET will be extended when the nominal switching frequency is 4MHz, k will be 1.4; however, it will be disabled when the nominal switching frequency is 1.5MHz, resulting in k being 1.

The inductor current ripple can be obtained by Equation 3:

$$
\Delta i_{L} = \frac{V_{IN} - V_{OUT}}{L} \times t_{1}
$$
 (3)

where V_{IN} is the input voltage, V_{OUT} is the output voltage, and t_1 is the on-time of high-side MOSFET. t_1 can be calculated by Equation 4:

$$
t_1 = \frac{V_{\text{OUT}}}{V_{\text{IN}}} \times t \times k \tag{4}
$$

The output voltage ripple can be calculated by Equation 5:

$$
VOUT_{\text{ripple}} = \frac{\Delta Q}{C_{\text{OUT}}} = \frac{(V_{\text{IN}} - V_{\text{OUT}}) \times V_{\text{OUT}} \times t^2 \times k^2}{2 \times V_{\text{IN}} \times L \times C_{\text{OUT}}}
$$
(5)

where t is 250ns. When fsw is 4 MHz; t is 660ns when fsw is 1.5MHz.

Since the valley voltage is fixed, the average output voltage depends on the output voltage ripple. Additionally, the larger the output capacitance, the smaller the output voltage ripple. As a result, the average output voltage with larger output capacitance is lower due to the reduced voltage ripple, compared to the average output voltage with smaller output capacitance.

Figure 4. Inductor Current in DCM Mode

17.4 Power Sequence

There are three common power-on device scenarios:

- 1. EN is pulled high after VIN has been established.
- 2. EN and VIN are established at same time.
- 3. VIN is pulled high after EN has been established.

There will be two types of boot-up times. One is to enable the system after VIN has been established, and after a period of tss_EN, the device boots up. The other is that EN has been established before VIN is pulled high, and after a period of delay, the device boots up.

RT5716

There are two common power-off scenarios:

1. When VIN is at a high level, the EN is pulled low, and the device is powered off by EN.

2. When VIN is pulled low, the device is powered off by UVLO after tuyLO DT. In this case, a slew rate of > 600us is recommended when VIN is powered off.

To ensure that the device boots up as shown in Figure 5, it is recommended to power VIN from 0V and have a 100ms interval between each power-up.

Figure 6. Power-On/Off Sequence

17.5 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature TJ(MAX), listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

$P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$

where $T_{\text{J}(MAX)}$ is the maximum junction temperature. TA is the ambient temperature, and θ_{J} is the junction-toambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ JA, is highly package dependent. For a TWL-CSP-6B 0.69x1.04 (BSC) package, the thermal resistance, θ JA, is 96.8°C/W on a standard JEDEC 51-7 high effectivethermal-conductivity four-layer test board. For a WDFN-6L 1.5x1.5 (FC) package, the thermal resistance, θ JA, is 145.34°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at $TA = 25^{\circ}C$ can be calculated as below:

PD(MAX) = (125°C - 25°C) / (96.8°C/W) = 1.03W for a TWL-CSP-6B 0.69x1.04 (BSC) package.

 $PDMAX = (125^{\circ}C - 25^{\circ}C) / (145.34^{\circ}C/W) = 0.69W$ for a WDFN-6L 1.5x1.5 (FC) package.

The maximum power dissipation depends on the operating ambient temperature for the fixed TJ(MAX) and the thermal $resistance, θ JA. The derating curves in [Figure 3](#page-21-4) allow the designer to see the effect of rising ambient temperature on$ the maximum power dissipation.

Figure 3. Derating Curves of Maximum Power Dissipation

17.6 Layout Considerations

For high-frequency switching power supplies, the PCB layout is crucial to get good regulation, high efficiency and stability. The following guidelines can help achieve a better PCB layout.

- ⚫ For good regulation, place the power components as close as possible. The traces should be wide and short, especially for the high-current loop.
- ⚫ Shorten the SW node trace length and make it wide.

Table 2. Protection Trigger Condition and Behavior

25

Figure 7. PCB Layout Guide for TWL-CSP-6B 0.69x1.04 (BSC) Package

Figure 8. PCB Layout Guide for WDFN-6L 1.5x1.5 (FC) Package

Note 10. The information provided in this section is for reference only. The customer is solely responsible for designing, validating, and testing any applications incorporating Richtek's product(s). The customer is also responsible for applicable standards and any safety, security, or other requirements.

18 Outline Dimension

18.1 TWL-CSP-6B 0.69x1.04 (BSC)

6B TWL-CSP 0.69x1.04 Package

18.2 WDFN-6L 1.5x1.5 (FC)

W-Type 6L DFN 1.5x1.5 Package (FC)

RT5716

19 Footprint Information

19.1 TWL-CSP-6B 0.69x1.04 (BSC)

29

RT5716

19.2 WDFN-6L 1.5x1.5 (FC)

20 Packing Information

20.1 Tape and Reel Data

20.1.1 TWL-CSP-6B 0.69x1.04 (BSC)

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 8mm carrier tape: 0.5mm max.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation. DS5716-01 October 2024 www.richtek.com

20.1.2 WDFN-6L 1.5x1.5 (FC)

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows:

- For 12mm carrier tape: 0.5mm max.

20.2 Tape and Reel Packing

20.2.1 TWL-CSP-6B 0.69x1.04 (BSC)

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

20.2.2 WDFN-6L 1.5x1.5 (FC)

20.3 Packing Material Anti-ESD Property

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation.

DS5716-01 October 2024 www.richtek.com

RT5716

21 Datasheet Revision History

